| Citation: | CHEN Ruirui, CHEN Yu, RAN Jiale, SUN Yanjing, LI Song. Design and Optimization for Orbital Angular Momentum–based wireless-powered Noma Communication System[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250634 |
| [1] |
VAEZI M, AZARI A, KHOSRAVIRAD S R, et al. Cellular, wide-area, and non-terrestrial IoT: A survey on 5g advances and the road toward 6G[J]. IEEE Communications Surveys & Tutorials, 2022, 24(2): 1117–1174. doi: 10.1109/COMST.2022.3151028.
|
| [2] |
DASH S P, JOSHI S, SATAPATHY S C, et al. A cybertwin-based 6g cooperative IoE communication network: Secrecy outage analysis[J]. IEEE Transactions on Industrial Informatics, 2022, 18(7): 4922–4932. doi: 10.1109/TII.2021.3140125.
|
| [3] |
KISHK M A and DHILLON H S. Coexistence of RF-powered IoT and a primary wireless network with secrecy guard zones[J]. IEEE Transactions on Wireless Communications, 2018, 17(3): 1460–1473. doi: 10.1109/TWC.2017.2778703.
|
| [4] |
马克明, 陈亚军, 胡鑫, 等. 面向物联网无线携能通信系统的机会安全传输方案[J]. 通信学报, 2019, 40(2): 70–81. doi: 10.11959/j.issn.1000?436x.2019036.
MA Keming, CHEN Yajun, HU Xin, et al. Opportunistic secure transmission scheme for simultaneous wireless information and power transfer[J]. Journal on Communications, 2019, 40(2): 70–81. doi: 10.11959/j.issn.1000?436x.2019036.
|
| [5] |
徐勇军, 刘子腱, 李国权, 等. 基于NOMA的无线携能D2D通信鲁棒能效优化算法[J]. 电子与信息学报, 2021, 43(5): 1289–1297. doi: 10.11999/JEIT200175.
XU Yongjun, LIU Zijian, LI Guoquan, et al. Robust energy efficiency optimization algorithm for NOMA-based D2D communication with simultaneous wireless information and power transfer[J]. Journal of Electronics & Information Technology, 2021, 43(5): 1289–1297. doi: 10.11999/JEIT200175.
|
| [6] |
PERERA T D P, JAYAKODY D N K, SHARMA S K, et al. Simultaneous wireless information and power transfer (SWIPT): Recent advances and future challenges[J]. IEEE Communications Surveys & Tutorials, 2018, 20(1): 264–302. doi: 10.1109/COMST.2017.2783901.
|
| [7] |
XU Kui, SHEN Zhexian, WANG Yurong, et al. Hybrid time-switching and power splitting SWIPT for full-duplex massive MIMO systems: A beam-domain approach[J]. IEEE Transactions on Vehicular Technology, 2018, 67(8): 7257–7274. doi: 10.1109/TVT.2018.2831790.
|
| [8] |
CHEN Jie, ZHANG Lin, LIANG Yingchang, et al. Resource allocation for wireless-powered IoT networks with short packet communication[J]. IEEE Transactions on Wireless Communications, 2019, 18(2): 1447–1461. doi: 10.1109/TWC.2019.2893335.
|
| [9] |
YU Yu, TANG Jie, HUANG Jiayi, et al. Multi-objective optimization for UAV-assisted wireless powered IoT networks based on extended DDPG algorithm[J]. IEEE Transactions on Communications, 2021, 69(9): 6361–6374. doi: 10.1109/TCOMM.2021.3089476.
|
| [10] |
ZHU Zhengyu, LI Zheng, CHU Zheng, et al. Resource allocation for intelligent reflecting surface assisted wireless powered IoT systems with power splitting[J]. IEEE Transactions on Wireless Communications, 2022, 21(5): 2987–2998. doi: 10.1109/TWC.2021.3117346.
|
| [11] |
CHU Zheng, XIAO Pei, MI De, et al. Multi-IRS assisted multi-cluster wireless powered IoT networks[J]. IEEE Transactions on Wireless Communications, 2023, 22(7): 4712–4728. doi: 10.1109/TWC.2022.3228017.
|
| [12] |
ZHAI Liangsen, ZOU Yulong, and ZHU Jia. Stackelberg game-based multiple access design for intelligent reflecting surface assisted wireless powered IoT networks[J]. IEEE Transactions on Wireless Communications, 2023, 22(10): 6883–6897. doi: 10.1109/TWC.2023.3246561.
|
| [13] |
KUMAR D, KUMAR SINGH C, ALCARAZ LÓPEZ O L, et al. Performance analysis of passive/active RIS aided wireless-powered IoT network with nonlinear energy harvesting[J]. IEEE Transactions on Wireless Communications, 2025, 24(2): 1132–1145. doi: 10.1109/TWC.2024.3505296.
|
| [14] |
ISLAM S M R, AVAZOV N, DOBRE O A, et al. Power-domain non-orthogonal multiple access (NOMA) in 5G Systems: Potentials and Challenges[J]. IEEE Communications Surveys & Tutorials, 2017, 19(2): 721–742. doi: 10.1109/COMST.2016.2621116.
|
| [15] |
李兴旺, 王新莹, 田心记, 等. 基于非理想条件可重构智能超表面辅助无线携能通信-非正交多址接入系统通感性能研究[J]. 电子与信息学报, 2024, 46(6): 2434–2442. doi: 10.11999/JEIT231395.
LI Xingwang, WANG Xinying, TIAN Xinji, et al. Communication and sensing performance analysis of RIS-assisted SWIPT-NOMA system under non-ideal conditions[J]. Journal of Electronics & Information Technology, 2024, 46(6): 2434–2442. doi: 10.11999/JEIT231395.
|
| [16] |
KHAVARI-MOGHADDAM S, FARAHMAND S, RAZAVIZADEH S M, et al. Optimum solutions for weighted sum-rate of NOMA and TDMA in wireless-powered IoT networks[J]. IEEE Internet of Things Journal, 2024, 11(2): 3302–3315. doi: 10.1109/JIOT.2023.3297719.
|
| [17] |
WANG Jie, KANG Xin, SUN Sumei, et al. Throughput maximization for peer-assisted wireless powered IoT NOMA networks[J]. IEEE Transactions on Wireless Communications, 2020, 19(8): 5278–5291. doi: 10.1109/TWC.2020.2991400.
|
| [18] |
LI Xingwang, WANG Qunshu, LIU Meng, et al. Cooperative wireless-powered NOMA relaying for B5G IoT networks with hardware impairments and channel estimation errors[J]. IEEE Internet of Things Journal, 2021, 8(7): 5453–5467. doi: 10.1109/JIOT.2020.3029754.
|
| [19] |
VU T H and KIM S. Performance evaluation of power-beacon-assisted wireless-powered NOMA IoT-based systems[J]. IEEE Internet of Things Journal, 2021, 14(15): 11655–11665. doi: 10.1109/JIOT.2021.3058680.
|
| [20] |
VU T H, NGUYEN T V, and KIM S. Wireless powered cognitive NOMA-based IoT relay networks: Performance analysis and deep learning evaluation[J]. IEEE Internet of Things Journal, 2022, 9(5): 3913–3929. doi: 10.1109/JIOT.2021.3100616.
|
| [21] |
NGUYEN M T, VU T H and KIM S. Performance analysis of wireless powered cooperative NOMA-based CDRT IoT networks[J]. IEEE Systems Journal, 2022, 16(4): 6501–6512. doi: 10.1109/JSYST.2022.3144023.
|
| [22] |
LYU Runyu, CHENG Wenchi, WANG Muyao, et al. A modified 3D-GBSM for OAM wireless communication at 5.8 and 28-GHz[J]. IEEE Transactions on Wireless Communications, 2025, 24(10): 8799–8813. doi: 10.1109/TWC.2025.3569098.
|
| [23] |
CHEN Rui, ZHOU Hong, MORETTI M, et al. Orbital angular momentum waves: Generation, detection, and emerging applications[J]. IEEE Communications Surveys & Tutorials, 2020, 22(2): 840–868. doi: 10.1109/COMST.2019.2952453.
|
| [24] |
YU Wei, ZHOU Bin, XU Fangying, et al. The impact of asymmetric antenna element's radiation pattern and its solution analysis for UCA-based OAM communications[J]. IEEE Transactions on Vehicular Technology, 2025, 74(3): 4554–4568. doi: 10.1109/TVT.2024.3498005.
|
| [25] |
CHEN Ruirui, CHENG Wenchi, XU Keyue, et al. NOMA-enhanced IRS for wireless-powered OAM communications via joint power allocation and passive beamforming[J]. IEEE Transactions on Communications, 2025, 73(7): 5420–5432. doi: 10.1109/TCOMM.2024.3522045.
|
| [26] |
MA Xiaoyan, ZHAO Yufei, ZHANG Haixia, et al. Joint precoder and reflector design for RIS-assisted multi-user OAM communication systems[J]. IEEE Transactions on Wireless Communications, 2025. doi: 10.1109/TWC.2025.3585531. (查阅网上资料,未找到卷期页码信息,请确认).
|
| [27] |
SASAKI H, YAGI Y, FUKUMOTO H, et al. OAM-MIMO multiplexing transmission system for high-capacity wireless communications on millimeter-wave band[J]. IEEE Transactions on Wireless Communications, 2024, 23(5): 3990–4003. doi: 10.1109/TWC.2023.3313735.
|
| [28] |
CHEN Yuqi, XIONG Xiaowen, ZHENG Shilie, et al. OAM spatial field digital modulation system for physical-level secure communication[J]. IEEE Transactions on Wireless Communications, 2024, 23(12): 18472–18486. doi: 10.1109/TWC.2024.3468349.
|
| [29] |
GAO Weijun, YANG Zhirong, and HAN Chong. Channel modeling and evaluation on terahertz orbital angular momentum (OAM)-based intersatellite communications[J]. IEEE Transactions on Antennas and Propagation, 2025, 73(7): 4840–4852. doi: 10.1109/TAP.2025.3551609.
|
| [30] |
CHEN Rui, CHEN Min, XIAO Xiao, et al. Multi-user orbital angular momentum based terahertz communications[J]. IEEE Transactions on Wireless Communications, 2023, 22(9): 6283–6297. doi: 10.1109/TWC.2023.3241287.
|
| [31] |
KHAN M L W, WOO J, YI Xiang, et al. A 0.31-THz orbital-angular-momentum (OAM) wave transceiver in CMOS with bits-to-OAM mode mapping[J]. IEEE Journal of Solid-State Circuits, 2022, 57(5): 1344–1357. doi: 10.1109/JSSC.2022.3141366.
|
| [32] |
ZHU Lipeng, MA Wenyan, and ZHANG Rui. Movable antennas for wireless communication: Opportunities and challenges[J]. IEEE Communications Magazine, 2024, 62(6): 114–120. doi: 10.1109/MCOM.001.2300212.
|