Citation: | YU Guodong, JIANG Yichun, LIU Yunqing, WANG Yijun, ZHAN Weida, WANG Chunyang, FENG Jianghai, HAN Yueyi. A Spatial-semantic Combine Perception for Infrared UAV Target Tracking[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250613 |
[1] |
聂伟, 张中洋, 杨小龙, 等. 基于梅尔倒谱系数的无人机探测与识别方法[J]. 电子与信息学报, 2025, 47(4): 1076–1084. doi: 10.11999/JEIT241111.
NIE Wei, ZHANG Zhongyang, YANG Xiaolong, et al. Unmanned aerial vehicles detection and recognition method based on Mel frequency cepstral coefficients[J]. Journal of Electronics & Information Technology, 2025, 47(4): 1076–1084. doi: 10.11999/JEIT241111.
|
[2] |
GUO Dongyan, WANG Jun, CUI Ying, et al. SiamCAR: Siamese fully convolutional classification and regression for visual tracking[C]. Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 6268–6276. doi: 10.1109/CVPR42600.2020.00630.
|
[3] |
ZHANG Zhipeng, PENG Houwen, FU Jianlong, et al. Ocean: Object-aware anchor-free tracking[C]. Proceedings of 16th European Conference on Computer Vision – ECCV 2020, Glasgow, UK, 2020: 771–787. doi: 10.1007/978-3-030-58589-1_46.
|
[4] |
侯志强, 王卓, 马素刚, 等. 长时视觉跟踪中基于双模板Siamese结构的目标漂移判定网络[J]. 电子与信息学报, 2024, 46(4): 1458–1467. doi: 10.11999/JEIT230496.
HOU Zhiqiang, WANG Zhuo, MA Sugang, et al. Target drift discriminative network based on dual-template Siamese structure in long-term tracking[J]. Journal of Electronics & Information Technology, 2024, 46(4): 1458–1467. doi: 10.11999/JEIT230496.
|
[5] |
JIANG Nan, WANG Kuiran, PENG Xiaoke, et al. Anti-UAV: A large multi-modal benchmark for UAV tracking[J]. arXiv preprint arXiv: 2101.08466, 2021. doi: 10.48550/arXiv.2101.08466. (查阅网上资料,不确定本文献类型是否正确,请确认).
|
[6] |
GAO Shenyuan, ZHOU Chunluan, MA Chao, et al. AiATrack: Attention in attention for transformer visual tracking[C]. Proceedings of the 17th European Conference on Computer Vision – ECCV 2022, Tel Aviv, Israel, 2022: 146–164. doi: 10.1007/978-3-031-20047-2_9.
|
[7] |
YAN Bin, JIANG Yi, SUN Peize, et al. Towards grand unification of object tracking[C]. Proceedings of 17th European Conference on Computer Vision – ECCV 2022, Tel Aviv, Israel, 2022: 733–751. doi: 10.1007/978-3-031-19803-8_43.
|
[8] |
计忠平, 王相威, 何志伟, 等. 集成全局局部特征交互与角动量机制的端到端多目标跟踪算法[J]. 电子与信息学报, 2024, 46(9): 3703–3712. doi: 10.11999/JEIT240277.
JI Zhongping, WANG Xiangwei, HE Zhiwei, et al. End-to-end multi-object tracking algorithm integrating global local feature interaction and angular momentum mechanism[J]. Journal of Electronics & Information Technology, 2024, 46(9): 3703–3712. doi: 10.11999/JEIT240277.
|
[9] |
FANG Houzhang, WANG Xiaolin, LIAO Zikai, et al. A real-time anti-distractor infrared UAV tracker with channel feature refinement module[C]. Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision Workshops, Montreal, Canada, 2021: 1240. doi: 10.1109/ICCVW54120.2021.00144.
|
[10] |
李华耀, 钟小勇, 杨智能, 等. 结合孪生网络和Transformer的轻量级无人机目标跟踪算法[J]. 电光与控制, 2025, 32(6): 31–37. doi: 10.3969/j.issn.1671-637X.2025.06.005.
LI Huayao, ZHONG Xiaoyong, YANG Zhineng, et al. A lightweight UAV tracking algorithm combining Siamese network with Transformer[J]. Electronics Optics & Control, 2025, 32(6): 31–37. doi: 10.3969/j.issn.1671-637X.2025.06.005.
|
[11] |
齐咏生, 姜政廷, 刘利强, 等. SiamMT: 基于自适应特征融合机制的可修正RGBT目标跟踪算法[J]. 控制与决策, 2025, 40(4): 1312–1320. doi: 10.13195/j.kzyjc.2024.0205.
QI Yongsheng, JIANG Zhengting, LIU Liqiang, et al. SiamMT: Amodifiable RGBT target tracking algorithm based on adaptive feature fusion mechanism[J]. Control and Decision, 2025, 40(4): 1312–1320. doi: 10.13195/j.kzyjc.2024.0205.
|
[12] |
SHAN Yunxiao, ZHOU Xiaomei, LIU Shanghua, et al. SiamFPN: A deep learning method for accurate and real-time maritime ship tracking[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 31(1): 315–325. doi: 10.1109/TCSVT.2020.2978194.
|
[13] |
LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]. Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 936–944. doi: 10.1109/CVPR.2017.106.
|
[14] |
HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778. doi: 10.1109/CVPR.2016.90.
|
[15] |
HU Jie, SHEN Li, and SUN Gang. Squeeze-and-excitation networks[C]. Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 7132–7141. doi: 10.1109/CVPR.2018.00745.
|
[16] |
SHEN Zhuoran, ZHANG Mingyuan, ZHAO Haiyu, et al. Efficient attention: Attention with linear complexities[C]. Proceedings of the 2021 IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, USA, 2021: 3530–3538. doi: 10.1109/WACV48630.2021.00357.
|
[17] |
JOCHER G, STOKEN A, BOROVEC J, et al. “YOLOv5, ” https://github.com/ultralytics/yolov5, 2021. (查阅网上资料,未找到本条文献信息,请确认).
|
[18] |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]. Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 2999–3007. doi: 10.1109/ICCV.2017.324.
|
[19] |
REZATOFIGHI H, TSOI N, GWAK J, et al. Generalized intersection over union: A metric and a loss for bounding box regression[C]. Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 658–666. doi: 10.1109/CVPR.2019.00075.
|
[20] |
HUANG Lianghua, ZHAO Xin, and HUANG Kaiqi. GlobalTrack: A simple and strong baseline for long-term tracking[C]. The Thirty-Fourth AAAI Conference on Artificial Intelligence, Palo Alto, USA, 2020: 11037–11044. doi: 10.1609/aaai.v34i07.6758.
|
[21] |
GAO Shenyuan, ZHOU Chunluan, and ZHANG Jun. Generalized relation modeling for transformer tracking[C]. Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023: 18686–18695. doi: 10.1109/CVPR52729.2023.01792.
|
[22] |
YE Botao, CHANG Hong, MA Bingpeng, et al. Joint feature learning and relation modeling for tracking: A one-stream framework[C]. Proceedings of 17th European Conference on Computer Vision – ECCV 2022, Tel Aviv, Israel, 2022: 341–357. doi: 10.1007/978-3-031-20047-2_20.
|
[23] |
GU Fengwei, LU Jun, CAI Chengtao, et al. EANTrack: An efficient attention network for visual tracking[J]. IEEE Transactions on Automation Science and Engineering, 2024, 21(4): 5911–5928. doi: 10.1109/TASE.2023.3319676.
|
[24] |
LIU Chang, ZHAO Jie, BO Chunjuan, et al. LGTrack: Exploiting local and global properties for robust visual tracking[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2024, 34(9): 8161–8171. doi: 10.1109/TCSVT.2024.3390054.
|
[25] |
WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module[C]. Proceedings of 15th European Conference on Computer Vision – ECCV, Munich, Germany, 2018: 3–19. doi: 10.1007/978-3-030-01234-2_1.
|
[26] |
HUANG Hejun, CHEN Zuguo, ZOU Ying, et al. Channel prior convolutional attention for medical image segmentation[J]. Computers in Biology and Medicine, 2024, 178: 108784. doi: 10.1016/j.compbiomed.2024.108784.
|