Citation: | WANG Zhen, LIU Wei, LU Wanjie, NIU Chaoyang, LI Runsheng. Multi-modal Joint Automatic Modulation Recognition Method Towards Low SNR Sequences[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250594 |
[1] |
MA Jitong, HU Mutian, CHEN Xiao, et al. Few-shot automatic modulation classification via semi-supervised metric learning and lightweight conv-transformer model[J]. IEEE Transactions on Cognitive Communications and Networking. doi: 10.1109/TCCN.2025.3574312.
|
[2] |
XU J L, SU Wei, and ZHOU Mengchu. Likelihood-ratio approaches to automatic modulation classification[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 2011, 41(4): 455–469. doi: 10.1109/TSMCC.2010.2076347.
|
[3] |
IGLESIAS V, GRAJAL J, ROYER P, et al. Real-time low-complexity automatic modulation classifier for pulsed radar signals[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(1): 108–126. doi: 10.1109/TAES.2014.130183.
|
[4] |
郑庆河, 刘方霖, 余礼苏, 等. 基于改进Kolmogorov-Arnold混合卷积神经网络的调制识别方法[J]. 电子与信息学报, 2025, 47(8): 2584–2597. doi: 10.11999/JEIT250161.
ZHENG Qinghe, LIU Fanglin, YU Lisu, et al. An improved modulation recognition method based on hybrid kolmogorov-arnold convolutional neural network[J]. Journal of Electronics & Information Technology, 2025, 47(8): 2584–2597. doi: 10.11999/JEIT250161.
|
[5] |
LI Mingkun, WANG Pengyu, DONG Yuhan, et al. Diffusion model empowered data augmentation for automatic modulation recognition[J]. IEEE Wireless Communications Letters, 2025, 14(4): 1224–1228. doi: 10.1109/LWC.2025.3539821.
|
[6] |
李钦, 刘伟, 牛朝阳, 等. 低信噪比下基于分裂EfficientNet网络的雷达信号调制方式识别[J]. 电子学报, 2023, 51(3): 675–686. doi: 10.12263/DZXB.20210656.
LI Qin, LIU Wei, NIU Chaoyang, et al. Radar signal modulation recognition based on split EfficientNet under low signal-to-noise ratio[J]. Acta Electronica Sinica, 2023, 51(3): 675–686. doi: 10.12263/DZXB.20210656.
|
[7] |
CHEN Zhuangzhi, CUI Hui, XIANG Jingyang, et al. SigNet: A novel deep learning framework for radio signal classification[J]. IEEE Transactions on Cognitive Communications and Networking, 2022, 8(2): 529–541. doi: 10.1109/TCCN.2021.3120997.
|
[8] |
KE Ziqi and VIKALO H. Real-time radio technology and modulation classification via an LSTM auto-encoder[J]. IEEE Transactions on Wireless Communications, 2022, 21(1): 370–382. doi: 10.1109/TWC.2021.3095855.
|
[9] |
SHAO Mingyuan, LI Dingzhao, HONG Shaohua, et al. IQFormer: A novel transformer-based model with multi-modality fusion for automatic modulation recognition[J]. IEEE Transactions on Cognitive Communications and Networking, 2025, 11(3): 1623–1634. doi: 10.1109/TCCN.2024.3485118.
|
[10] |
ZHAN Quanhai, ZHANG Xiongwei, SUN Meng, et al. Adversarial robust modulation recognition guided by attention mechanisms[J]. IEEE Open Journal of Signal Processing, 2025, 6: 17–29. doi: 10.1109/OJSP.2025.3526577.
|
[11] |
GUO Yuanpu, DAN Zhong, SUN Haixin, et al. SemiAMR: Semi-supervised automatic modulation recognition with corrected pseudo-label and consistency regularization[J]. IEEE Transactions on Cognitive Communications and Networking, 2024, 10(1): 107–121. doi: 10.1109/TCCN.2023.3319530.
|
[12] |
MA Jitong, HU Mutian, WANG Tianyu, et al. Automatic modulation classification in impulsive noise: Hyperbolic-tangent cyclic spectrum and multibranch attention shuffle network[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 5501613. doi: 10.1109/TIM.2023.3244798.
|
[13] |
WANG Danshi, ZHANG Min, LI Ze, et al. Modulation format recognition and OSNR estimation using CNN-based deep learning[J]. IEEE Photonics Technology Letters, 2017, 29(19): 1667–1670. doi: 10.1109/LPT.2017.2742553.
|
[14] |
PENG Shengliang, JIANG Hanyu, WANG Huaxia, et al. Modulation classification based on signal constellation diagrams and deep learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(3): 718–727. doi: 10.1109/TNNLS.2018.2850703.
|
[15] |
SHI Yunhao, XU Hua, ZHANG Yue, et al. GAF-MAE: A self-supervised automatic modulation classification method based on gramian angular field and masked autoencoder[J]. IEEE Transactions on Cognitive Communications and Networking, 2024, 10(1): 94–106. doi: 10.1109/TCCN.2023.3318414.
|
[16] |
ZHANG Zufan, WANG Chun, GAN Chenquan, et al. Automatic modulation classification using convolutional neural network with features fusion of SPWVD and BJD[J]. IEEE Transactions on Signal and Information Processing over Networks, 2019, 5(3): 469–478. doi: 10.1109/TSIPN.2019.2900201.
|
[17] |
ZHENG Shilian, ZHOU Xiaoyu, ZHANG Luxin, et al. Toward next-generation signal intelligence: A hybrid knowledge and data-driven deep learning framework for radio signal classification[J]. IEEE Transactions on Cognitive Communications and Networking, 2023, 9(3): 564–579. doi: 10.1109/TCCN.2023.3243899.
|
[18] |
SHI Yunhao, XU Hua, QI Zisen, et al. STTMC: A few-shot spatial temporal transductive modulation classifier[J]. IEEE Transactions on Machine Learning in Communications and Networking, 2024, 2: 546–559. doi: 10.1109/TMLCN.2024.3387430.
|
[19] |
WANG Feng, YANG Chenlu, HUANG Shanshan, et al. Automatic modulation classification based on joint feature map and convolutional neural network[J]. IET Radar, Sonar & Navigation, 2019, 13(6): 998–1003. doi: 10.1049/iet-rsn.2018.5549.
|
[20] |
ZHUANG Long, LUO Kai, and YANG Zhibo. A multimodal gated recurrent unit neural network model for damage assessment in CFRP composites based on lamb waves and minimal sensing[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 3506911. doi: 10.1109/TIM.2023.3348884.
|
[21] |
QU Yunpeng, LU Zhilin, ZENG Rui, et al. Enhancing automatic modulation recognition through robust global feature extraction[J]. IEEE Transactions on Vehicular Technology, 2025, 74(3): 4192–4207. doi: 10.1109/TVT.2024.3486079.
|
[22] |
ZHANG Shu, ZHENG Dequan, HU Xinchen, et al. Bidirectional long short-term memory networks for relation classification[C]. The 29th Pacific Asia Conference on Language, Information and Computation, Shanghai, China, 2015: 73–78.
|
[23] |
ZHU Jinhua, XIA Yingce, WU Lijun, et al. Masked contrastive representation learning for reinforcement learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(3): 3421–3433. doi: 10.1109/TPAMI.2022.3176413.
|
[24] |
HUANG Wenhao, GONG Haifan, ZHANG Huan, et al. BCNet: Bronchus classification via structure guided representation learning[J]. IEEE Transactions on Medical Imaging, 2025, 44(1): 489–498. doi: 10.1109/TMI.2024.3448468.
|
[25] |
SAINI R, JHA N K, DAS B, et al. ULSAM: Ultra-lightweight subspace attention module for compact convolutional neural networks[C]. 2020 IEEE Winter Conference on Applications of Computer Vision, Snowmass, CO, USA, 2020: 1616–1625. doi: 10.1109/WACV45572.2020.9093341.
|
[26] |
LIU Ziming, WANG Yixuan, VAIDYA S, et al. KAN: Kolmogorov-Arnold networks[C]. 13th International Conference on Learning Representations, Singapore, Singapore, 2025.
|
[27] |
HUYNH-THE T, HUA C H, PHAM Q V, et al. MCNet: An efficient CNN architecture for robust automatic modulation classification[J]. IEEE Communications Letters, 2020, 24(4): 811–815. doi: 10.1109/LCOMM.2020.2968030.
|
[28] |
RAJENDRAN S, MEERT W, GIUSTINIANO D, et al. Deep learning models for wireless signal classification with distributed low-cost spectrum sensors[J]. IEEE Transactions on Cognitive Communications and Networking, 2018, 4(3): 433–445. doi: 10.1109/TCCN.2018.2835460.
|
[29] |
ZHANG Fuxin, LUO Chunbo, XU Jialang, et al. An efficient deep learning model for automatic modulation recognition based on parameter estimation and transformation[J]. IEEE Communications Letters, 2021, 25(10): 3287–3290. doi: 10.1109/LCOMM.2021.3102656.
|
[30] |
XU Jialang, LUO Chunbo, PARR G, et al. A spatiotemporal multi-channel learning framework for automatic modulation recognition[J]. IEEE Wireless Communications Letters, 2020, 9(10): 1629–1632. doi: 10.1109/LWC.2020.2999453.
|
[31] |
ZHANG Jiawei, WANG Tiantian, FENG Zhixi, et al. AMC-Net: An effective network for automatic modulation classification[C]. 2023 IEEE International Conference on Acoustics, Speech and Signal Processing, Rhodes Island, Greece, 2023: 1–5. doi: 10.1109/ICASSP49357.2023.10097070.
|
[32] |
CHEN Yantao, DONG Binhong, LIU Cuiting, et al. Abandon locality: Frame-wise embedding aided transformer for automatic modulation recognition[J]. IEEE Communications Letters, 2023, 27(1): 327–331. doi: 10.1109/LCOMM.2022.3213523.
|
[33] |
O’SHEA T J, CORGAN J, and CHARLES CLANCY T. Convolutional radio modulation recognition networks[C]. 17th International Conference on Engineering Applications of Neural Networks, Aberdeen, UK, 2016: 213–226. doi: 10.1007/978-3-319-44188-7_16.
|
[34] |
JAFARIGOL E, ALAGHBAND B, GILANPOUR A, et al. AI/ML-based automatic modulation recognition: Recent trends and future possibilities[J]. arXiv: 2502.05315, 2025. doi: 10.48550/arXiv.2502.05315.(查阅网上资料,未能确认文献类型,请确认).
|