Citation: | MA Zhenguo, HE Zixuan, SUN Yanjing, WANG Bowen, LIU Jianchun, XU Hongli. Research on Federated Unlearning Approach Based on Adaptive Model Pruning[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250503 |
[1] |
SHI Weisong, CAO Jie, ZHANG Quan, et al. Edge computing: Vision and challenges[J]. IEEE Internet of Things Journal, 2016, 3(5): 637–646. doi: 10.1109/JIOT.2016.2579198.
|
[2] |
MCMAHAN B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data[C]. The 20th International Conference on Artificial Intelligence and Statistics, Fort Lauderdale, USA, 2017: 1273–1282.
|
[3] |
管桂林, 陶政坪, 支婷, 等. 面向医疗场景的去中心化联邦学习隐私保护方法[J]. 计算机应用, 2024, 44(S2): 112–117. doi: 10.11772/j.issn.1001-9081.2024030347.
GUAN Guilin, TAO Zhengping, ZHI Ting, et al. Decentralized federated learning privacy protection method for medical scenarios[J]. Journal of Computer Applications, 2024, 44(S2): 112–117. doi: 10.11772/j.issn.1001-9081.2024030347.
|
[4] |
智慧, 段苗苗, 杨利霞, 等. 一种基于区块链和联邦学习融合的交通流预测方法[J]. 电子与信息学报, 2024, 46(9): 3777–3787. doi: 10.11999/JEIT240030.
ZHI Hui, DUAN Miaomiao, YANG Lixia, et al. A traffic flow prediction method based on the fusion of blockchain and federated learning[J]. Journal of Electronics & Information Technology, 2024, 46(9): 3777–3787. doi: 10.11999/JEIT240030.
|
[5] |
郑润达, 张维, 张永杰, 等. 金融领域中的联邦学习研究[J]. 数智技术研究与应用, 2025, 1(1): 1–17. doi: 10.26917/j.cnki.issn.2097-597X.2025.01.001.
ZHENG Runda, ZHANG Wei, ZHANG Yongjie, et al. Research on federated learning in the field of finance[J]. SmartTech Innovations, 2025, 1(1): 1–17. doi: 10.26917/j.cnki.issn.2097-597X.2025.01.001.
|
[6] |
肖雄, 唐卓, 肖斌, 等. 联邦学习的隐私保护与安全防御研究综述[J]. 计算机学报, 2023, 46(5): 1019–1044. doi: 10.11897/SP.J.1016.2023.01019.
XIAO Xiong, TANG Zhuo, XIAO Bin, et al. A survey on privacy and security issues in federated learning[J]. Chinese Journal of Computers, 2023, 46(5): 1019–1044. doi: 10.11897/SP.J.1016.2023.01019.
|
[7] |
LIU Ziyao, JIANG Yu, SHEN Jiyuan, et al. A survey on federated unlearning: Challenges, methods, and future directions[J]. ACM Computing Surveys, 2025, 57(1): 2. doi: 10.1145/3679014.
|
[8] |
WU Leijie, GUO Song, WANG Junxiao, et al. Federated unlearning: Guarantee the right of clients to forget[J]. IEEE Network, 2022, 36(5): 129–135. doi: 10.1109/MNET.001.2200198.
|
[9] |
WANG Zichen, GAO Xiangshan, WANG Cong, et al. Efficient vertical federated unlearning via fast retraining[J]. ACM Transactions on Internet Technology, 2024, 24(2): 11. doi: 10.1145/3657290.
|
[10] |
SYROS G, YAR G, BOBOILA S, et al. Backdoor attacks in peer-to-peer federated learning[J]. ACM Transactions on Privacy and Security, 2025, 28(1): 8. doi: 10.1145/3691633.
|
[11] |
WANG Junxiao, GUO Song, XIE Xin, et al. Federated unlearning via class-discriminative pruning[C]. The ACM Web Conference, Lyon, France, 2022: 622–632. doi: 10.1145/3485447.3512222.
|
[12] |
WANG Lun, XU Yang, XU Hongli, et al. BOSE: Block-wise federated learning in heterogeneous edge computing[J]. IEEE/ACM Transactions on Networking, 2024, 32(2): 1362–1377. doi: 10.1109/TNET.2023.3316421.
|
[13] |
JIANG Zhida, XU Yang, XU hongli, et al. Computation and communication efficient federated learning with adaptive model pruning[J]. IEEE Transactions on Mobile Computing, 2024, 23(3): 2003–2021. doi: 10.1109/TMC.2023.3247798.
|
[14] |
MA Zhenguo, XU Yang, XU Hongli, et al. Adaptive batch size for federated learning in resource-constrained edge computing[J]. IEEE Transactions on Mobile Computing, 2023, 22(1): 37–53. doi: 10.1109/TMC.2021.3075291.
|
[15] |
AIZAWA A. An information-theoretic perspective of tf–idf measures[J]. Information Processing & Management, 2003, 39(1): 45–65. doi: 10.1016/S0306-4573(02)00021-3.
|
[16] |
XIAO Han, RASUL K, and VOLLGRAF R. Fashion-MNIST: A novel image dataset for benchmarking machine learning algorithms[J]. arXiv preprint arXiv: 1708.07747, 2017. doi: 10.48550/arXiv.1708.07747. (查阅网上资料,请核对文献类型及格式是否正确).
|
[17] |
KRIZHEVSKY A, NAIR V, and HINTON G. The CIFAR-100 dataset[EB/OL]. http://www.cs.toronto.edu/~kriz/cifar.html, 2024. (查阅网上资料,未找到本条文献出版或更新年份信息,请确认).
|
[18] |
PAN Zibin, WANG Zhichao, LI Chi, et al. Federated unlearning with gradient descent and conflict mitigation[C]. The 39th AAAI Conference on Artificial Intelligence, Philadelphia, USA, 2025: 19804–19812. doi: 10.1609/aaai.v39i19.34181.
|