| Citation: | YANG Hongyu, LUO Jingchuan, CHENG Xiang, HU Juncheng. Source Code Vulnerability Detection Method Integrating Code Sequences and Property Graphs[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250470 |
| [1] |
苏小红, 郑伟宁, 蒋远, 等. 基于学习的源代码漏洞检测研究与进展[J]. 计算机学报, 2024, 47(2): 337–374. doi: 10.11897/SP.J.1016.2024.00337.
SU Xiaohong, ZHENG Weining, JIANG Yuan, et al. Research and progress on learning-based source code vulnerability detection[J]. Chinese Journal of Computers, 2024, 47(2): 337–374. doi: 10.11897/SP.J.1016.2024.00337.
|
| [2] |
FU M and TANTITHAMTHAVORN C. LineVul: A transformer-based line-level vulnerability prediction[C]. The 19th International Conference on Mining Software Repositories, Pittsburgh, USA, 2022: 608–620. doi: 10.1145/3524842.3528452.
|
| [3] |
LI Zhen, ZOU Deqing, XU Shouhuai, et al. SySeVR: A framework for using deep learning to detect software vulnerabilities[J]. IEEE Transactions on Dependable and Secure Computing, 2022, 19(4): 2244–2258. doi: 10.1109/TDSC.2021.3051525.
|
| [4] |
XIA Yuying, SHAO Haijian, and DENG Xing. VulCoBERT: A CodeBERT-based system for source code vulnerability detection[C]. The 2024 International Conference on Generative Artificial Intelligence and Information Security, Guangzhou, China, 2024: 249–252. doi: 10.1145/3665348.3665391.
|
| [5] |
DU Gewangzi, CHEN Liwei, WU Tongshuai, et al. CPMSVD: Cross-project multiclass software vulnerability detection via fused deep feature and domain adaptation[C]. The 49th IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Seoul, South Korea, 2024: 4950–4954. doi: 10.1109/ICASSP48485.2024.10447552.
|
| [6] |
SHESTOV A, LEVICHEV R, MUSSABAYEV R, et al. Finetuning large language models for vulnerability detection[J]. IEEE Access, 2025, 13: 38889–38900. doi: 10.1109/ACCESS.2025.3546700.
|
| [7] |
DO C X, LUU N T, and NGUYEN P T L. Optimizing software vulnerability detection using RoBERTa and machine learning[J]. Automated Software Engineering, 2024, 31(2): 40. doi: 10.1007/s10515-024-00440-1.
|
| [8] |
FENG Zhangyin, GUO Daya, TANG Duyu, et al. CodeBERT: A pre-trained model for programming and natural languages[C]. Findings of the Association for Computational Linguistics: EMNLP 2020, 2020: 1536–1547. doi: 10.18653/v1/2020.findings-emnlp.139. (查阅网上资料,未找到对应的出版地信息,请确认补充).
|
| [9] |
ZHOU Yaqin, LIU Shangqing, SIOW J, et al. Devign: Effective vulnerability identification by learning comprehensive program semantics via graph neural networks[C]. The 33rd International Conference on Neural Information Processing Systems, Vancouver, Canada, 2019: 915.
|
| [10] |
CHAKRABORTY S, KRISHNA R, DING Yangruibo, et al. Deep learning based vulnerability detection: Are we there yet?[J]. IEEE Transactions on Software Engineering, 2022, 48(9): 3280–3296. doi: 10.1109/TSE.2021.3087402.
|
| [11] |
WEN Xincheng, GAO Cuiyun, GAO Shuzheng, et al. SCALE: Constructing structured natural language comment trees for software vulnerability detection[C]. The 33rd ACM SIGSOFT International Symposium on Software Testing and Analysis, Vienna, Austria, 2024: 235–247. doi: 10.1145/3650212.3652124.
|
| [12] |
LIU Ruitong, WANG Yanbin, XU Haitao, et al. Vul-LMGNNs: Fusing language models and online-distilled graph neural networks for code vulnerability detection[J]. Information Fusion, 2025, 115: 102748. doi: 10.1016/j.inffus.2024.102748.
|
| [13] |
TANG Mingwei, TANG Wei, GUI Qingchi, et al. A vulnerability detection algorithm based on Residual Graph Attention Networks for source code imbalance (RGAN)[J]. Expert Systems with Applications, 2024, 238: 122216. doi: 10.1016/j.eswa.2023.122216.
|
| [14] |
SHAO Miaomiao, DING Yuxin, CAO Jing, et al. GraphFVD: Property graph-based fine-grained vulnerability detection[J]. Computers & Security, 2025, 151: 104350. doi: 10.1016/j.cose.2025.104350.
|
| [15] |
胡雨涛, 王溯远, 吴月明, 等. 基于图神经网络的切片级漏洞检测及解释方法[J]. 软件学报, 2023, 34(6): 2543–2561. doi: 10.13328/j.cnki.jos.006849.
HU Yutao, WANG Suyuan, WU Yueming, et al. Slice-level vulnerability detection and interpretation method based on graph neural network[J]. Journal of Software, 2023, 34(6): 2543–2561. doi: 10.13328/j.cnki.jos.006849.
|
| [16] |
QIU Fangcheng, LIU Zhongxin, HU Xing, et al. Vulnerability detection via multiple-graph-based code representation[J]. IEEE Transactions on Software Engineering, 2024, 50(8): 2178–2199. doi: 10.1109/tse.2024.3427815.
|
| [17] |
ZHANG Guodong, YAO Tianyu, QIN Jiawei, et al. CodeSAGE: A multi-feature fusion vulnerability detection approach using code attribute graphs and attention mechanisms[J]. Journal of Information Security and Applications, 2025, 89: 103973. doi: 10.1016/j.jisa.2025.103973.
|
| [18] |
GUO Daya, LU Shuai, DUAN Nan, et al. UniXcoder: Unified cross-modal pre-training for code representation[C]. The 60th Annual Meeting of the Association for Computational Linguistics, Dublin, Ireland, 2022: 7212–7225. doi: 10.18653/v1/2022.acl-long.499.
|
| [19] |
BRESSON X and LAURENT T. Residual gated graph convnets[EB/OL]. https://arxiv.org/abs/1711.07553, 2017.
|
| [20] |
LIN Yuxiao, MENG Yuxian, SUN Xiaofei, et al. BertGCN: Transductive text classification by combining GNN and BERT[C]. Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, Bangkok, Thailand, 2021: 1456–1462. doi: 10.18653/v1/2021.findings-acl.126. (查阅网上资料,未找到对应的出版地信息,请确认).
|
| [21] |
NI Chao, YIN Xin, YANG Kaiwen, et al. Distinguishing look-alike innocent and vulnerable code by subtle semantic representation learning and explanation[C]. The 31st ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering, San Francisco, USA, 2023: 1611–1622. doi: 10.1145/3611643.3616358.
|
| [22] |
GUO Daya, REN Shuo, LU Shuai, et al. GraphCodeBERT: Pre-training code representations with data flow[C]. 9th International Conference on Learning Representations, 2021. (查阅网上资料, 未找到对应的出版地及页码信息, 请确认补充).
|
| [23] |
ZHOU Shuyan, ALON U, AGARWAL S, et al. CodeBERTScore: Evaluating code generation with pretrained models of code[C]. The 2023 Conference on Empirical Methods in Natural Language Processing, Singapore, Singapore, 2023: 13921–13937. doi: 10.18653/v1/2023.emnlp-main.859.
|
| [24] |
GUO Daya, XU Canwen, DUAN Nan, et al. LongCoder: A long-range pre-trained language model for code completion[C]. 40th International Conference on Machine Learning, Honolulu, USA, 2023: 12098–12107.
|