Citation: | Multi-modal Joint Distillation Optimization for Source Code Vulnerability Detection[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250453 |
[1] |
Skybox Security. Vulnerability and threat trends report 2024[EB/OL]. https://www.skyboxsecurity.com/resources/report/vulnera-bility-threat-trends-report-2024, 2025. (查阅网上资料,未找到本条文献信息且网址打不开,请确认).
|
[2] |
Coverity Scan. Coverity scan static analysis[EB/OL]. https://scan.coverity.com/, 2024.
|
[3] |
AYEWAH N, PUGH W, HOVEMEYER D, et al. Using static analysis to find bugs[J]. IEEE Software, 2008, 25(5): 22–29. doi: 10.1109/MS.2008.130.
|
[4] |
PERL H, DECHAND S, SMITH M, et al. VCCFinder: Finding potential vulnerabilities in open-source projects to assist code audits[C]. The 22nd ACM SIGSAC Conference on Computer and Communications Security, Denver, USA, 2015: 426–437. doi: 10.1145/2810103.2813604.
|
[5] |
LI Zhen, ZOU Deqing, XU Shouhuai, et al. VulDeePecker: A deep learning-based system for vulnerability detection[C]. The 25th Annual Network and Distributed System Security Symposium, San Diego, USA, 2018.
|
[6] |
LI Zhen, ZOU Deqing, XU Shouhuai, et al. SySeVR: A framework for using deep learning to detect software vulnerabilities[J]. IEEE Transactions on Dependable and Secure Computing, 2022, 19(4): 2244–2258. doi: 10.1109/TDSC.2021.3051525.
|
[7] |
JIANG Yuan, ZHANG Yujian, SU Xiaohong, et al. StagedVulBERT: Multigranular vulnerability detection with a novel pretrained code model[J]. IEEE Transactions on Software Engineering, 2024, 50(12): 3454–3471. doi: 10.1109/TSE.2024.3493245.
|
[8] |
杨宏宇, 马建辉, 侯旻, 等. 基于多模态对比学习的代码表征增强预训练方法[J]. 软件学报, 2024, 35(4): 1601–1617. doi: 10.13328/j.cnki.jos.007016.
YANG Hongyu, MA Jianhui, HOU Min, et al. Pre-training method for enhanced code representation based on multimodal contrastive learning[J]. Journal of Software, 2024, 35(4): 1601–1617. doi: 10.13328/j.cnki.jos.007016.
|
[9] |
ZHANG Kechi, LI Jia, LI Zhuo, et al. Transformer-based code model with compressed hierarchy representation[J]. Empirical Software Engineering, 2025, 30(2): 60. doi: 10.1007/s10664-025-10612-6.
|
[10] |
YAMAGUCHI F, LINDNER F, and RIECK K. Vulnerability extrapolation: Assisted discovery of vulnerabilities using machine learning[C]. Proceedings of the 5th USENIX Conference on Offensive Technologies, San Francisco, USA, 2011.
|
[11] |
DAM H K, PHAM T, NG S W, et al. Lessons learned from using a deep tree-based model for software defect prediction in practice[C]. 2019 IEEE/ACM 16th International Conference on Mining Software Repositories (MSR), Montreal, Canada, 2019: 46–57. doi: 10.1109/MSR.2019.00017.
|
[12] |
李韵, 黄辰林, 王中锋, 等. 基于机器学习的软件漏洞挖掘方法综述[J]. 软件学报, 2020, 31(7): 2040–2061. doi: 10.13328/j.cnki.jos.006055.
LI Yun, HUANG Chenlin, WANG Zhongfeng, et al. Survey of software vulnerability mining methods based on machine learning[J]. Journal of Software, 2020, 31(7): 2040–2061. doi: 10.13328/j.cnki.jos.006055.
|
[13] |
FENG Qi, FENG Chendong, and HONG Weijiang. Graph neural network-based vulnerability predication[C]. 2020 IEEE International Conference on Software Maintenance and Evolution (ICSME), Adelaide, Australia, 2020: 800–801. doi: 10.1109/ICSME46990.2020.00096.
|
[14] |
GHAFFARIAN S M and SHAHRIARI H R. Neural software vulnerability analysis using rich intermediate graph representations of programs[J]. Information Sciences, 2021, 553: 189–207. doi: 10.1016/j.ins.2020.11.053.
|
[15] |
WU Bolun, ZOU Futai, YI Ping, et al. SlicedLocator: Code vulnerability locator based on sliced dependence graph[J]. Computers & Security, 2023, 134: 103469. doi: 10.1016/j.cose.2023.103469.
|
[16] |
GUO Xiaobao, KONG A W K, and KOT A. Deep multimodal sequence fusion by regularized expressive representation distillation[J]. IEEE Transactions on Multimedia, 2023, 25: 2085–2096. doi: 10.1109/TMM.2022.3142448.
|
[17] |
FENG Zhangyin, GUO Daya, TANG Duyu, et al. CodeBERT: A pre-trained model for programming and natural languages[C]. Findings of the Association for Computational Linguistics: EMNLP 2020, 2020: 1536–1547. doi: 10.18653/v1/2020.findings-emnlp.139. (查阅网上资料,未找到对应的出版地信息,请确认补充).
|
[18] |
GUO Daya, REN Shuo, LU Shuai, et al. GraphCodeBERT: Pre-training code representations with data flow[C]. The 9th International Conference on Learning Representations, 2021. (查阅网上资料, 未找到对应的出版地信息, 请确认补充).
|
[19] |
GUO Daya, LU Shuai, DUAN Nan, et al. UniXcoder: Unified cross-modal pre-training for code representation[C]. Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics, Dublin, Ireland, 2022: 7212–7225. doi: 10.18653/v1/2022.acl-long.499.
|
[20] |
邓枭, 叶蔚, 谢睿, 等. 基于深度学习的源代码缺陷检测研究综述[J]. 软件学报, 2023, 34(2): 625–654. doi: 10.13328/j.cnki.jos.006696.
DENG Xiao, YE Wei, XIE Rui, et al. Survey of source code bug detection based on deep learning[J]. Journal of Software, 2023, 34(2): 625–654. doi: 10.13328/j.cnki.jos.006696.
|
[21] |
张学军, 张奉鹤, 盖继扬, 等. mVulSniffer: 一种多类型源代码漏洞检测方法[J]. 通信学报, 2023, 44(9): 149–160. doi: 10.11959/j.issn.1000-436x.2023184.
ZHANG Xuejun, ZHANG Fenghe, GAI Jiyang, et al. mVulSniffer: A multi-type source code vulnerability sniffer method[J]. Journal on Communications, 2023, 44(9): 149–160. doi: 10.11959/j.issn.1000-436x.2023184.
|
[22] |
XU Xiangzhe, ZHANG Zhuo, SU Zian, et al. Symbol preference aware generative models for recovering variable names from stripped binary[EB/OL]. https://arxiv.org/abs/2306.02546, 2023.
|
[23] |
WANG Yue, WANG Weishi, JOTY S, et al. CodeT5: Identifier-aware unified pre-trained encoder-decoder models for code understanding and generation[C]. Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, Punta Cana, Dominican Republic, 2021: 8696–8708. doi: 10.18653/v1/2021.emnlp-main.685.
|
[24] |
WU Xinyi, AJORLOU A, WU Zihui, et al. Demystifying oversmoothing in attention-based graph neural networks[C]. Proceedings of the 37th International Conference on Neural Information Processing Systems, New Orleans, USA, 2023: 1524.
|
[25] |
TANG Wensi, LONG Guodong, LIU Lu, et al. Omni-scale CNNs: A simple and effective kernel size configuration for time series classification[C]. Proceedings of the 10th International Conference on Learning Representations, 2022. (查阅网上资料, 未找到对应的出版地信息, 请确认补充).
|
[26] |
MITRE. Common Vulnerabilities and Exposures (CVE)[EB/OL]. https://cve.mitre.org/, 2024. (查阅网上资料,未找到本条文献信息且网址打不开,请确认).
|
[27] |
NIST. Software assurance reference dataset[EB/OL]. https://samate.nist.gov/SARD/test-suites, 2024. (查阅网上资料,未找到本条文献信息且网址打不开,请确认).
|
[28] |
ZHOU Yaqin, LIU Shangqing, SIOW Jingkai, et al. Devign: Effective vulnerability identification by learning comprehensive program semantics via graph neural networks[C]. Proceedings of the 33rd International Conference on Neural Information Processing Systems, Vancouver, Canada, 2019: 915.
|
[29] |
NGUYEN VA, NGUYEN DQ, NGUYEN V, et al. ReGVD: Revisiting graph neural networks for vulnerability detection[C]. Proceedings of the ACM/IEEE 44th International Conference on Software Engineering: Companion Proceedings, Pittsburgh, USA, 2022: 178–182. doi: 10.1145/3510454.3516865.
|
[30] |
DU Xiaohu, WEN Ming, ZHU Jiahao, et al. Generalization-enhanced code vulnerability detection via multi-task instruction fine-tuning[C]. Findings of the Association for Computational Linguistics: ACL, Bangkok, Thailand, 2024: 10507–10521. doi: 10.18653/v1/2024.findings-acl.625.
|
[31] |
ESPOSITO M, FALASCHI V, and FALESSI D. An extensive comparison of static application security testing tools[C]. The 28th International Conference on Evaluation and Assessment in Software Engineering, Salerno, Italy, 2024: 69–78. doi: 10.1145/3661167.3661199.
|