| Citation: | GONG Bi, LIU Jian, TANG Xiaomei, YU Meiting, GONG Hang, HUANG Meigen. Intelligent Analysis Technologies for Encrypted Traffic: Current Status, Advances, and Challenges[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250416 |
| [1] |
XU Junfeng, LIN Weiguo, and FAN Wenqing. APT encrypted traffic detection method based on two-parties and multi-session for IoT[EB/OL]. http://arxiv.org/abs/2302.13234, 2023.
|
| [2] |
YI Tao, CHEN Xingshu, LI Qindong, et al. An anomaly behavior characterization method of network traffic based on Spatial Pyramid Pool (SPP)[J]. Computers & Security, 2024, 141: 103809. doi: 10.1016/j.cose.2024.103809.
|
| [3] |
ALMUHAMMADI S, ALNAJIM A, and AYUB M. QUIC network traffic classification using ensemble machine learning techniques[J]. Applied Sciences, 2023, 13(8): 4725. doi: 10.3390/app13084725.
|
| [4] |
LUXEMBURK J, HYNEK K, ČEJKA T, et al. CESNET-QUIC22: A large one-month QUIC network traffic dataset from backbone lines[J]. Data in Brief, 2023, 46: 108888. doi: 10.1016/j.dib.2023.108888.
|
| [5] |
ZUO Ming, GUO Changyong, XU Haiyan, et al. METC: A hybrid deep learning framework for cross-network encrypted DNS over HTTPS traffic detection and tunnel identification[J]. Information Fusion, 2025, 121: 103125. doi: 10.1016/j.inffus.2025.103125.
|
| [6] |
JUNG W K and KWAK B I. MTL-DoHTA: Multi-task learning-based DNS over HTTPS traffic analysis for enhanced network security[J]. Sensors, 2025, 25(4): 993. doi: 10.3390/s25040993.
|
| [7] |
ALZIGHAIBI A R. Detection of DoH traffic tunnels using deep learning for encrypted traffic classification[J]. Computers, 2023, 12(3): 47. doi: 10.3390/computers12030047.
|
| [8] |
AFZAL A, HUSSAIN M, SALEEM S, et al. Encrypted network traffic analysis of secure instant messaging application: A case study of signal messenger app[J]. Applied Sciences, 2021, 11(17): 7789. doi: 10.3390/app11177789.
|
| [9] |
ALSERHANI F. Analysis of encrypted network traffic for enhancing cyber-security in dynamic environments[J]. Applied Artificial Intelligence, 2024, 38(1): 2381882. doi: 10.1080/08839514.2024.2381882.
|
| [10] |
DONG Wenqi, YU Jing, LIN Xinjie, et al. Deep learning and pre-training technology for encrypted traffic classification: A comprehensive review[J]. Neurocomputing, 2025, 617: 128444. doi: 10.1016/j.neucom.2024.128444.
|
| [11] |
MILLER K M, LUKIC K, and SKIERA B. The impact of the General Data Protection Regulation (GDPR) on online tracking[J]. International Journal of Research in Marketing, 2025: S0167811625000229. doi: 10.1016/j.ijresmar.2025.03.002.(查阅网上资料,未找到卷期页码信息,请确认补充).
|
| [12] |
OCELÍK V, KOLK A, and IRION K. Shifting battlegrounds: Corporate political activity in the general data protection regulation[J]. Academy of Management Proceedings, 2023, 2023(1): 11059. doi: 10.5465/AMPROC.2023.208bp.(查阅网上资料,页码信息不确定,请确认).
|
| [13] |
SCHÄGE S. TOPAS2-pass key exchange with full perfect forward secrecy and optimal communication complexity[J]. Designs, Codes and Cryptography, 2024, 92(10): 3085–3124. doi: 10.1007/s10623-024-01429-3.
|
| [14] |
LEE C D and CHEN T H. New secure and practical E-mail protocol with perfect forward secrecy[J]. Symmetry, 2021, 13(7): 1144. doi: 10.3390/sym13071144.
|
| [15] |
FAN Qing, CHEN Jianhua, SHOJAFAR M, et al. SAKE*: A symmetric authenticated key exchange protocol with perfect forward secrecy for industrial internet of things[J]. IEEE Transactions on Industrial Informatics, 2022, 18(9): 6424–6434. doi: 10.1109/TII.2022.3145584.
|
| [16] |
CHEN Fangjie, BAI Jingpeng, and GAO Weihan. Research on encrypted traffic detection based on key features[J]. IEEE Access, 2024, 12: 1786–1793. doi: 10.1109/ACCESS.2023.3347806.
|
| [17] |
SHEKHAWAT A S, DI TROIA F, and STAMP M. Feature analysis of encrypted malicious traffic[J]. Expert Systems with Applications: An International Journal, 2019, 125(C): 130–141. doi: 10.1016/j.eswa.2019.01.064.
|
| [18] |
ZHENG Xianchun and LI Hui. Identification of malicious encrypted traffic through feature fusion[J]. IEEE Access, 2023, 11: 80072–80080. doi: 10.1109/ACCESS.2023.3279120.
|
| [19] |
PATHMAPERUMA M H, RAHULAMATHAVAN Y, DOGAN S, et al. Deep learning for encrypted traffic classification and unknown data detection[J]. Sensors, 2022, 22(19): 7643. doi: 10.3390/s22197643.
|
| [20] |
WU Hao, ZHANG Xi, and YANG Jufeng. Deep learning-based encrypted network traffic classification and resource allocation in SDN[J]. Journal of Web Engineering, 2021, 20(8): 2319–2334. doi: 10.13052/jwe1540-9589.2085.
|
| [21] |
CHEN Xuyang, HAN Lu, ZHAN Dechuan, et al. MIETT: Multi-instance encrypted traffic transformer for encrypted traffic classification[C]. Proceedings of the 39th AAAI Conference on Artificial Intelligence, Philadelphia, USA, 2025: 15922–15929. doi: 10.1609/aaai.v39i15.33748.
|
| [22] |
ZHAN Mingming, YANG Jin, JIA Dongqing, et al. EAPT: An encrypted traffic classification model via adversarial pre-trained transformers[J]. Computer Networks, 2025, 257: 110973. doi: 10.1016/j.comnet.2024.110973.
|
| [23] |
WANG Zixuan, MIAO Cheng, XU Yuhua, et al. Trusted encrypted traffic intrusion detection method based on federated learning and autoencoder[J]. China Communications, 2024, 21(8): 211–235. doi: 10.23919/JCC.ja.2022-0392.
|
| [24] |
LIU Wei, CUI Wentao, SHE Wei, et al. Encrypted network traffic detection based on Blockchain and federated learning[C]. 2024 4th International Conference on Blockchain Technology and Information Security (ICBCTIS), Wuhan, China, 2024: 139–144. doi: 10.1109/ICBCTIS64495.2024.00030.
|
| [25] |
ZENG Yong, WANG Zhe, GUO Xiaoya, et al. Social networks based robust federated learning for encrypted traffic classification[C]. ICC 2023 - IEEE International Conference on Communications, Rome, Italy, 2023: 4937–4942. doi: 10.1109/ICC45041.2023.10279778.
|
| [26] |
WANG Xiangbin, YUAN Qingjun, WANG Yongjuan, et al. Combine intra- and inter-flow: A multimodal encrypted traffic classification model driven by diverse features[J]. Computer Networks, 2024, 245: 110403. doi: 10.1016/j.comnet.2024.110403.
|
| [27] |
LIU Ming, YANG Qichao, WANG Wenqing, et al. Semi-supervised encrypted malicious traffic detection based on multimodal traffic characteristics[J]. Sensors, 2024, 24(20): 6507. doi: 10.3390/s24206507.
|
| [28] |
DAI Jianbang, XU Xiaolong, and XIAO Fu. GLADS: A global-local attention data selection model for multimodal multitask encrypted traffic classification of IoT[J]. Computer Networks, 2023, 225: 109652. doi: 10.1016/j.comnet.2023.109652.
|
| [29] |
MENG Xuying, LIN Chungang, WANG Yequan, et al. NetGPT: Generative pretrained transformer for network traffic[EB/OL]. http://arxiv.org/abs/2304.09513, 2023.
|
| [30] |
ACETO G, CIUONZO D, MONTIERI A, et al. MIMETIC: Mobile encrypted traffic classification using multimodal deep learning[J]. Computer Networks, 2019, 165: 106944. doi: 10.1016/j.comnet.2019.106944.
|
| [31] |
WANG Tongze, XIE Xiaohui, WANG Wenduo, et al. NetMamba: Efficient network traffic classification via pre-training unidirectional mamba[C]. 2024 IEEE 32nd International Conference on Network Protocols (ICNP), Charleroi, Belgium, 2024: 1-11. doi: 10.1109/ICNP61940.2024.10858569.
|
| [32] |
付钰, 刘涛涛, 王坤, 等. 基于机器学习的加密流量分类研究综述[J]. 通信学报, 2025, 46(1): 167–191. doi: 10.11959/j.issn.1000-436x.2025006.
FU Yu, LIU Taotao, WANG Kun, et al. Survey of research on encrypted traffic classification based on machine learning[J]. Journal on Communications, 2025, 46(1): 167–191. doi: 10.11959/j.issn.1000-436x.2025006.
|
| [33] |
VU L, VAN TRA D, and NGUYEN Q U. Learning from imbalanced data for encrypted traffic identification problem[C]. Proceedings of the Seventh Symposium on Information and Communication Technology, Ho Chi Minh City, Vietnam, 2016: 147–152. doi: 10.1145/3011077.3011132.
|
| [34] |
VAN EDE T, BORTOLAMEOTTI R, CONTINELLA A, et al. FlowPrint: Semi-supervised mobile-app fingerprinting on encrypted network traffic[C]. Proceedings 2020 Network and Distributed System Security Symposium, San Diego, USA, 2020. doi: 10.14722/ndss.2020.24412.
|
| [35] |
REZAEI S and LIU Xin. Deep learning for encrypted traffic classification: An overview[J]. IEEE Communications Magazine, 2019, 57(5): 76–81. doi: 10.1109/MCOM.2019.1800819.
|
| [36] |
PARK J T, SHIN C Y, BAEK U J, et al. User behavior detection using multi-modal signatures of encrypted network traffic[J]. IEEE Access, 2023, 11: 97353–97372. doi: 10.1109/ACCESS.2023.3311889.
|
| [37] |
SUBAHI A and THEODORAKOPOULOS G. Detecting IoT user behavior and sensitive information in encrypted IoT-app traffic[J]. Sensors, 2019, 19(21): 4777. doi: 10.3390/s19214777.
|
| [38] |
WANG Jibao, CAO Zigang, KANG Cuicui, et al. User behavior classification in encrypted cloud camera traffic[C]. 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, USA, 2019: 1–6. doi: 10.1109/GLOBECOM38437.2019.9013558.
|
| [39] |
CONTI M, MANCINI L V, SPOLAOR R, et al. Analyzing android encrypted network traffic to identify user actions[J]. IEEE Transactions on Information Forensics and Security, 2016, 11(1): 114–125. doi: 10.1109/TIFS.2015.2478741.
|
| [40] |
ZHAI Liang, ZHENG Qiuhua, ZHANG Xu, et al. Identification of private ICS protocols based on raw traffic[J]. Symmetry, 2021, 13(9): 1743. doi: 10.3390/sym13091743.
|
| [41] |
MA Ruolong and QIN Sujuan. Identification of unknown protocol traffic based on deep learning[C]. 2017 3rd IEEE International Conference on Computer and Communications (ICCC), Chengdu, China, 2017: 1195–1198. doi: 10.1109/CompComm.2017.8322732.
|
| [42] |
顾伟, 行鸿彦, 侯天浩. 基于网络流量时空特征和自适应加权系数的异常流量检测方法[J]. 电子与信息学报, 2024, 46(6): 2647–2654. doi: 10.11999/JEIT230825.
GU Wei, XING Hongyan, and HOU Tianhao. Abnormal traffic detection method based on traffic spatial-temporal features and adaptive weighting coefficients[J]. Journal of Electronics & Information Technology, 2024, 46(6): 2647–2654. doi: 10.11999/JEIT230825.
|
| [43] |
IKRAM S T and CHERUKURI A K. Improving accuracy of intrusion detection model using PCA and optimized SVM[J]. CIT. Journal of Computing and Information Technology, 2016, 24(2): 133–148. doi: 10.20532/cit.2016.1002701.
|
| [44] |
KOCH R, GOLLING M, and RODOSEK G D. Behavior-based intrusion detection in encrypted environments[J]. IEEE Communications Magazine, 2014, 52(7): 124–131. doi: 10.1109/MCOM.2014.6852093.
|
| [45] |
FU Chuanpu, LI Qi, and XU Ke. Detecting unknown encrypted malicious traffic in real time via flow interaction graph analysis[C]. Proceedings 2023 Network and Distributed System Security Symposium, San Diego, USA, 2023. doi: 10.14722/ndss.2023.23080.
|
| [46] |
FU Chuanpu, LI Qi, SHEN Meng, et al. Frequency domain feature based robust malicious traffic detection[J]. IEEE/ACM Transactions on Networking, 2023, 31(1): 452–467. doi: 10.1109/TNET.2022.3195871.
|
| [47] |
MIAO Gongxun, WU Guohua, ZHANG Zhen, et al. Boosting encrypted traffic classification using feature-enhanced recurrent neural network with angle constraint[J]. IEEE Transactions on Big Data, 2025, 11(4): 1760–1771. doi: 10.1109/TBDATA.2024.3484674.
|
| [48] |
OEUNG P and SHEN Fuke. Imbalanced internet traffic classification using ensemble framework[C]. 2019 International Conference on Information Networking (ICOIN), Kuala Lumpur, Malaysia, 2019: 37–42. doi: 10.1109/ICOIN.2019.8717977.
|
| [49] |
QING Yuqi, YIN Qilei, DENG Xinhao, et al. Low-quality training data only? A robust framework for detecting encrypted malicious network traffic[C]. Proceedings 2024 Network and Distributed System Security Symposium, San Diego, USA, 2024. doi: 10.14722/ndss.2024.23081.
|
| [50] |
HE Hongye, YANG Zhiguo, and CHEN Xiangning. PERT: Payload encoding representation from transformer for encrypted traffic classification[C]. 2020 ITU Kaleidoscope: Industry-Driven Digital Transformation (ITU K), Ha Noi, Vietnam, 2020: 1–8. doi: 10.23919/ITUK50268.2020.9303204.
|
| [51] |
FU Chuanpu, LI Qi, XU Ke, et al. Point cloud analysis for ML-based malicious traffic detection: Reducing majorities of false positive alarms[C]. Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications Security, Copenhagen, Denmark, 2023: 1005–1019. doi: 10.1145/3576915.3616631.
|
| [52] |
ZHOU Guangmeng, GUO Xiongwen, LIU Zhuotao, et al. TrafficFormer: An efficient pre-trained model for traffic data[C]. 2025 IEEE Symposium on Security and Privacy (SP), San Francisco, USA, 2025: 1844–1860. doi: 10.1109/SP61157.2025.00102.
|
| [53] |
CUI Susu, HAN Xueying, DONG Cong, et al. MVDet: Encrypted malware traffic detection via multi-view analysis[J]. Journal of Computer Security, 2024, 32(6): 533–555. doi: 10.3233/JCS-230024.
|
| [54] |
OH C, HA J, and ROH H. A survey on TLS-encrypted malware network traffic analysis applicable to security operations centers[J]. Applied Sciences, 2021, 12(1): 155. doi: 10.3390/app12010155.
|
| [55] |
CUI Susu, DONG Cong, SHEN Meng, et al. CBSeq: A channel-level behavior sequence for encrypted malware traffic detection[J]. IEEE Transactions on Information Forensics and Security, 2023, 18: 5011–5025. doi: 10.1109/TIFS.2023.3300521.
|
| [56] |
SHAPIRA T and SHAVITT Y. FlowPic: A generic representation for encrypted traffic classification and applications identification[J]. IEEE Transactions on Network and Service Management, 2021, 18(2): 1218–1232. doi: 10.1109/TNSM.2021.3071441.
|
| [57] |
HOROWICZ E, SHAPIRA T, and SHAVITT Y. A few shots traffic classification with mini-FlowPic augmentations[C]. Proceedings of the 22nd ACM Internet Measurement Conference, Nice, France, 2022: 647–654. doi: 10.1145/3517745.3561436.
|
| [58] |
HOROWICZ E, SHAPIRA T, and SHAVITT Y. Self-supervised traffic classification: Flow embedding and few-shot solutions[J]. IEEE Transactions on Network and Service Management, 2024, 21(3): 3054–3067. doi: 10.1109/TNSM.2024.3366848.
|
| [59] |
WANG Wei, ZHU Ming, ZENG Xuewen, et al. Malware traffic classification using convolutional neural network for representation learning[C]. 2017 International Conference on Information Networking (ICOIN), Da Nang, Vietnam, 2017: 712–717. doi: 10.1109/ICOIN.2017.7899588.
|
| [60] |
HOLASOVA E, BLAZEK P, FUJDIAK R, et al. Exploring the power of convolutional neural networks for encrypted industrial protocols recognition[J]. Sustainable Energy, Grids and Networks, 2024, 38: 101269. doi: 10.1016/j.segan.2023.101269.
|
| [61] |
PENG Quan, FU Xingbing, LIN Fei, et al. Multi-scale convolutional neural networks optimized by elite strategy dung beetle optimization algorithm for encrypted traffic classification[J]. Expert Systems with Applications, 2025, 264: 125729. doi: 10.1016/j.eswa.2024.125729.
|
| [62] |
YU Lancan, YUAN Jianting, ZHENG Jin, et al. A model of encrypted network traffic classification that trades off accuracy and efficiency[J]. Journal of Network and Systems Management, 2025, 33(1): 11. doi: 10.1007/s10922-024-09892-y.
|
| [63] |
ABBAS S, ALSUBAI S, OJO S, et al. An efficient deep recurrent neural network for detection of cyberattacks in realistic IoT environment[J]. The Journal of Supercomputing, 2024, 80(10): 13557–13575. doi: 10.1007/s11227-024-05993-2.
|
| [64] |
SONG Zhuoxue, ZHAO Ziming, ZHANG Fan, et al. I2RNN: An incremental and interpretable recurrent neural network for encrypted traffic classification[J]. IEEE Transactions on Dependable and Secure Computing, 2024: 1–14. doi: 10.1109/TDSC.2023.3245411.(查阅网上资料,未找到卷期页码信息,请确认补充).
|
| [65] |
REN Xinming, GU Huaxi, and WEI Wenting. Tree-RNN: Tree structural recurrent neural network for network traffic classification[J]. Expert Systems with Applications, 2021, 167: 114363. doi: 10.1016/j.eswa.2020.114363.
|
| [66] |
HUOH T L, LUO Yan, LI Peilong, et al. Flow-based encrypted network traffic classification with graph neural networks[J]. IEEE Transactions on Network and Service Management, 2023, 20(2): 1224–1237. doi: 10.1109/TNSM.2022.3227500.
|
| [67] |
HAN Xinbo, XU Guizhong, ZHANG Meng, et al. DE-GNN: Dual embedding with graph neural network for fine-grained encrypted traffic classification[J]. Computer Networks, 2024, 245: 110372. doi: 10.1016/j.comnet.2024.110372.
|
| [68] |
SHEN Meng, ZHANG Jinpeng, ZHU Liehuang, et al. Accurate decentralized application identification via encrypted traffic analysis using graph neural networks[J]. IEEE Transactions on Information Forensics and Security, 2021, 16: 2367–2380. doi: 10.1109/TIFS.2021.3050608.
|
| [69] |
JUNG I S, SONG Y R, JILCHA L A, et al. Enhanced encrypted traffic analysis leveraging graph neural networks and optimized feature dimensionality reduction[J]. Symmetry, 2024, 16(6): 733. doi: 10.3390/sym16060733.
|
| [70] |
LI Zhiyuan, ZHAO Hongyi, ZHAO Jingyu, et al. SAT-Net: A staggered attention network using graph neural networks for encrypted traffic classification[J]. Journal of Network and Computer Applications, 2025, 233: 104069. doi: 10.1016/j.jnca.2024.104069.
|
| [71] |
LIN Xinjie, XIONG Gang, GOU Gaopeng, et al. ET-BERT: A contextualized datagram representation with pre-training transformers for encrypted traffic classification[C]. Proceedings of the ACM Web Conference 2022, Lyon, France, 2022: 633–642. doi: 10.1145/3485447.3512217.
|
| [72] |
HANG Zijun, LU Yuliang, WANG Yongjie, et al. Flow-MAE: Leveraging masked AutoEncoder for accurate, efficient and robust malicious traffic classification[C]. Proceedings of the 26th International Symposium on Research in Attacks, Intrusions and Defenses, Hong Kong, China, 2023: 297–314. doi: 10.1145/3607199.3607206.
|
| [73] |
ZHAO Ruijie, ZHAN Mingwei, DENG Xianwen, et al. Yet another traffic classifier: A masked Autoencoder based traffic transformer with multi-level flow representation[C]. Proceedings of the 37th AAAI Conference on Artificial Intelligence, Washington, USA, 2023: 5420–5427. doi: 10.1609/aaai.v37i4.25674.
|
| [74] |
FEDORCHENKO E, NOVIKOVA E, and SHULEPOV A. Comparative review of the intrusion detection systems based on federated learning: Advantages and open challenges[J]. Algorithms, 2022, 15(7): 247. doi: 10.3390/a15070247.
|
| [75] |
SANON S P, REDDY R, LIPPS C, et al. Secure federated learning: An evaluation of homomorphic encrypted network traffic prediction[C]. 2023 IEEE 20th Consumer Communications & Networking Conference (CCNC), Las Vegas, USA, 2023: 1–6. doi: 10.1109/CCNC51644.2023.10060116.
|
| [76] |
MARCILLO P, SUNTAXI G, and HERNÁNDEZ-ÁLVAREZ M. A privacy-preserving scheme for a traffic accident risk level prediction system[J]. Applied Sciences, 2024, 14(21): 9876. doi: 10.3390/app14219876.
|
| [77] |
NOVIKOVA E, DOYNIKOVA E, and GOLUBEV S. Federated learning for intrusion detection in the critical infrastructures: Vertically partitioned data use case[J]. Algorithms, 2022, 15(4): 104. doi: 10.3390/a15040104.
|
| [78] |
JIN Zhiping, DUAN Ke, CHEN Changhui, et al. FedETC: Encrypted traffic classification based on federated learning[J]. Heliyon, 2024, 10(16): e35962. doi: 10.1016/j.heliyon.2024.e35962.
|
| [79] |
YIN Ziwei, LI Kun, and BI Hongjun. Trusted multi-domain DDoS detection based on federated learning[J]. Sensors, 2022, 22(20): 7753. doi: 10.3390/s22207753.
|
| [80] |
LIN Peng, YE Kejiang, HU Yishen, et al. A novel multimodal deep learning framework for encrypted traffic classification[J]. IEEE/ACM Transactions on Networking, 2023, 31(3): 1369–1384. doi: 10.1109/TNET.2022.3215507.
|
| [81] |
ACETO G, CIUONZO D, MONTIERI A, et al. DISTILLER: Encrypted traffic classification via multimodal multitask deep learning[J]. Journal of Network and Computer Applications, 2021, 183/184: 102985. doi: 10.1016/j.jnca.2021.102985.
|
| [82] |
GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Communications of the ACM, 2020, 63(11): 139–144. doi: 10.1145/3422622.
|
| [83] |
YUAN Xinyu, QIAO Yan, WEI Zhenchun, et al. Diffusion models meet network management: Improving traffic matrix analysis with diffusion-based approach[J]. IEEE Transactions on Network and Service Management, 2025, 22(2): 1259–1275. doi: 10.1109/TNSM.2025.3527442.
|
| [84] |
YANG Ling, ZHANG Zhilong, SONG Yang, et al. Diffusion models: A comprehensive survey of methods and applications[J]. ACM Computing Surveys, 2023, 56(4): 105. doi: 10.1145/3626235.
|
| [85] |
WANG Pan, WANG Zixuan, YE Feng, et al. ByteSGAN: A semi-supervised generative adversarial network for encrypted traffic classification in SDN edge gateway[J]. Computer Networks, 2021, 200: 108535. doi: 10.1016/j.comnet.2021.108535.
|
| [86] |
ILIYASU A S and DENG Huifang. Semi-supervised encrypted traffic classification with deep convolutional generative adversarial networks[J]. IEEE Access, 2020, 8: 118–126. doi: 10.1109/ACCESS.2019.2962106.
|
| [87] |
MAO Jiaming, ZHANG Mingming, CHEN Mu, et al. Semisupervised encrypted traffic identification based on auxiliary classification generative adversarial network[J]. Computer Systems Science and Engineering, 2021, 39(3): 373–390. doi: 10.32604/csse.2021.018086.
|
| [88] |
SIVAROOPAN N, BANDARA D, MADARASINGHA C, et al. NetDiffus: Network traffic generation by diffusion models through time-series imaging[J]. Computer Networks, 2024, 251: 110616. doi: 10.1016/j.comnet.2024.110616.
|
| [89] |
ZHANG Shiyuan, CHAI Haoye, LI Yong, et al. PacketDiff: A flow guided diffusion model for network packet trace generation[J]. IEEE Internet of Things Journal, 2025, 12(18): 38804–38819. doi: 10.1109/JIOT.2025.3587658.
|
| [90] |
JIANG Xi, LIU Shinan, GEMBER-JACOBSON A, et al. NetDiffusion: Network data augmentation through protocol-constrained traffic generation[J]. Proceedings of the ACM on Measurement and Analysis of Computing Systems, 2024, 8(1): 11. doi: 10.1145/3639037.
|
| [91] |
HAYDEN B, WALSH T, and BARTON A. Defending against deep learning-based traffic fingerprinting attacks with adversarial examples[J]. ACM Transactions on Privacy and Security, 2025, 28(1): 1. doi: 10.1145/3698591.
|
| [92] |
ABOLFATHI M, INTURI S, BANAEI-KASHANI F, et al. Toward enhancing web privacy on HTTPS traffic: A novel SuperLearner attack model and an efficient defense approach with adversarial examples[J]. Computers & Security, 2024, 139: 103673. doi: 10.1016/j.cose.2023.103673.
|