Citation: | ZHAO Yanpeng, LI Falin, LI Xuan, YU Haibo, CAO Zhengtao, ZHANG Yi. Research and Design of a Ballistocardiogram-Based Heart Rate Variability (HRV) Monitoring Device Integrated into Pilot Helmets[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250342 |
[1] |
张燕雯, 张泉清, 邱婧婧, 等. 军机飞行员疲劳监测技术现状及发展趋势分析[C]. 第九届中国航空学会青年科技论坛论文集, 西安, 2020: 786–790. doi: 10.26914/c.cnkihy.2020.052347.
ZHANG Yanwen, ZHANG Quanqing, QIU Jingjing, et al. Analysis the status quo and development trend of fatigue monitoringtechnology for military pilots[C]. The 9th Youth Science and Technology Forum of the Chinese Society of Aeronautics and Astronautics, Xi’an, China, 2020: 786–790. doi: 10.26914/c.cnkihy.2020.052347. (查阅网上资料,未找到标黄信息,请确认).
|
[2] |
SUMMERFIELD D, RASLAU D, JOHNSON B, et al. Physiologic challenges to pilots of modern high performance aircraft[M]. KUŞHAN M C. Aircraft Technology. London: IntechOpen, 2018: 566–570. doi: 10.5772/intechopen.75982.
|
[3] |
FLOREA A D, ARGHIR S N, CHIRA A I, et al. Advancements in monitoring physical fatigue in aviation: A comprehensive analysis of state-of-the-art ECG sensor technologies[C]. Proceedings of the 2nd International Conference on Cognitive Aircraft Systems, Toulouse, France, 2024: 35–42 . DOI: 10.5220/0012950000004562.
|
[4] |
李洁, 李晟, 荆忱, 等. 高性能战斗机飞行员高空缺氧训练心电图变化分析[J]. 华南国防医学杂志, 2019, 33(1): 39–41,57. doi: 10.13730/j.issn.1009-2595.2019.01.010.
LI Jie, LI Sheng, JING Chen, et al. Analysis of electrocardiogram changes of high performance fighter pilots under high altitude hypoxia training[J]. Military Medical Journal of South China, 2019, 33(1): 39–41,57. doi: 10.13730/j.issn.1009-2595.2019.01.010.
|
[5] |
牛慧茹, 李姣姣, 李硕, 等. 军队作训人员动态心电图监测结果[J]. 心脏杂志, 2024, 36(5): 527–531,536. doi: 10.12125/j.chj.202311041.
NIU Huiru, LI Jiaojiao, LI Shuo, et al. Analysis of monitoring results of Holter electrocardiogram in military trainers[J]. Chinese Heart Journal, 2024, 36(5): 527–531,536. doi: 10.12125/j.chj.202311041.
|
[6] |
黄诗童, 张威强, 张朋柱. 基于HRV分析的可穿戴心电仪精神疲劳检测[J]. 计算机应用研究, 2019, 36(7): 2093–2097,2103. doi: 10.19734/j.issn.1001-3695.2018.05.0262.
HUANG Shitong, ZHANG Weiqiang, and ZHANG Pengzhu. Detection of mental fatigue with wearable ECG devices based on HRV analysis[J]. Application Research of Computers, 2019, 36(7): 2093–2097,2103. doi: 10.19734/j.issn.1001-3695.2018.05.0262.
|
[7] |
KIM K B and BAEK H J. Photoplethysmography in wearable devices: A comprehensive review of technological advances, current challenges, and future directions[J]. Electronics, 2023, 12(13): 2923. doi: 10.3390/electronics12132923.
|
[8] |
BOURDILLON N, JEANNERET F, NILCHIAN M, et al. Sleep deprivation deteriorates heart rate variability and photoplethysmography[J]. Frontiers in Neuroscience, 2021, 15: 642548. doi: 10.3389/fnins.2021.642548.
|
[9] |
CHROUSOS G P, PAPADOPOULOU-MARKETOU N, BACOPOULOU F, et al. Photoplethysmography (PPG)-determined heart rate variability (HRV) and extracellular water (ECW) in the evaluation of chronic stress and inflammation[J]. Hormones, 2022, 21(3): 383–390. doi: 10.1007/s42000-021-00341-y.
|
[10] |
SHEN Haiming, HAO Meiqing, REN Jiawei, et al. Experimental study on human HRV under different ventilation conditions in aircraft cockpit[C]. CSAA/IET International Conference on Aircraft Utility Systems, Xi'an, China, 2024: 489–493. doi: 10.1049/icp.2024.2938.
|
[11] |
ZHU Wenbing, ZHANG Chenyang, LIU Chuang, et al. Assessment of pilot mental workload based on physiological signals: A real helicopter cross-country flight study[C]. 2023 IEEE 5th International Conference on Civil Aviation Safety and Information Technology, Dali, China, 2023: 638–643. doi: 10.1109/ICCASIT58768.2023.10351548.
|
[12] |
JAAFAR R and ROZALI M A A. Estimation of breathing rate and heart rate from photoplethysmogram[C]. 2017 6th International Conference on Electrical Engineering and Informatics, Langkawi, Malaysia, 2017: 1–4. doi: 10.1109/ICEEI.2017.8312414.
|
[13] |
陈阳. 基于PPG的去运动伪影及心率估计方法研究[D]. [硕士论文], 电子科技大学, 2019.
CHEN Yang. Research on removal of motion artifact and heart rate estimation method based on PPG[D]. [Master dissertation], University of Electronic Science and Technology of China, 2019.
|
[14] |
张加宏, 孟辉, 谢丽君, 等. 基于心冲击图和BP神经网络的心率异常分类研究[J]. 数据采集与处理, 2021, 36(3): 565–576. doi: 10.16337/j.1004-9037.2021.03.014.
ZHANG Jiahong, MENG Hui, XIE Lijun, et al. Abnormal heart rate classification based on ballistocardiogram and BP neural network[J]. Journal of Data Acquisition & Processing, 2021, 36(3): 565–576. doi: 10.16337/j.1004-9037.2021.03.014.
|
[15] |
李倩, 王飞, 刘芊, 等. 心冲击图信号的采集和特征分析及其应用[J]. 中国医学物理学杂志, 2020, 37(1): 83–89. doi: 10.3969/j.issn.1005-202X.2020.01.017.
LI Qian, WANG Fei, LIU Qian, et al. Acquisition, feature analysis and application of ballistocardiogram signals[J]. Chinese Journal of Medical Physics, 2020, 37(1): 83–89. doi: 10.3969/j.issn.1005-202X.2020.01.017.
|
[16] |
蒋文俊, 曹新生. BCG技术发展现状及其在航空航天医学中的应用前景[J]. 心脏杂志, 2025, 37(1): 68–72. doi: 10.12125/j.chj.202403099.
JIANG Wenjun and CAO Xinsheng. Current state of ballistocardiogram development and its application prospects in aerospace medicine[J]. Chinese Heart Journal, 2025, 37(1): 68–72. doi: 10.12125/j.chj.202403099.
|
[17] |
ROSHAN S M and PARK E J. Optimal head-mounted IMU placement for heart rate detection using ballistography[C]. 2024 46th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Orlando, USA, 2024: 1–6. doi: 10.1109/EMBC53108.2024.10782353.
|
[18] |
SHIN S, MOUSAVI A S, LYLE S, et al. Posture-dependent variability in wrist ballistocardiogram-photoplethysmogram pulse transit time: Implication to cuff-less blood pressure tracking[J]. IEEE Transactions on Biomedical Engineering, 2022, 69(1): 347–355. doi: 10.1109/TBME.2021.3094200.
|
[19] |
SALAS P, MEJÍA-MUÑOZ J M, and GONZALEZ-LANDAETA R. Fog-enabled multimodal chest-worn device for systolic blood pressure monitoring[J]. IEEE Access, 2025, 13: 90345–90357. doi: 10.1109/ACCESS.2025.3571829.
|
[20] |
MENG Qiushuang, LIU Chuanxu, YANG Xiaotong, et al. Fiber optic wearable curvature sensor based on taper-assisted microcavity[J]. IEEE Sensors Journal, 2024, 24(17): 27500–27506. doi: 10.1109/JSEN.2024.3427842.
|
[21] |
SHEN Lingyu, WANG Zhuo, XIAO Kun, et al. WaveFlex sensor: Advancing wearable cardiorespiratory monitoring with flexible wave-shaped polymer optical fiber[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2024, 30(3): 5600209. doi: 10.1109/JSTQE.2023.3319581.
|
[22] |
ZHA Bingjie, WANG Zhuo, MA Lin, et al. Intelligent wearable photonic sensing system for remote healthcare monitoring using stretchable elastomer optical fiber[J]. IEEE Internet of Things Journal, 2024, 11(10): 17317–17329. doi: 10.1109/JIOT.2024.3356574.
|
[23] |
NAG A, NUTHALAPATI S, and MUKHOPADHYAY S C. Carbon fiber/polymer-based composites for wearable sensors: A review[J]. IEEE Sensors Journal, 2022, 22(11): 10235–10245. doi: 10.1109/JSEN.2022.3170313.
|
[24] |
曹欣荣, 王昆, 张晶, 等. 心冲击图心率变异性分析的可行性[J]. 科技导报, 2014, 32(4/5): 86–90. doi: 10.3981/j.issn.1000-7857.2014.h1.014.
CAO Xinrong, WANG Kun, ZHANG Jing, et al. Possibility of heart rate variability analysis using ballistocardiogram[J]. Science & Technology Review, 2014, 32(4/5): 86–90. doi: 10.3981/j.issn.1000-7857.2014.h1.014.
|
[25] |
段亚, 冯月, 彭冉, 等. 面向飞行作业人员的实时疲劳监测模型研究[J]. 飞行力学, 2024, 42(2): 68–74. doi: 10.13645/j.cnki.f.d.20240205.001.
DUAN Ya, FENG Yue, PENG Ran, et al. Research on real-time fatigue monitoring model for flight operators[J]. Flight Dynamics, 2024, 42(2): 68–74. doi: 10.13645/j.cnki.f.d.20240205.001.
|
[26] |
ZHANG Yi, CHEN Zhihao, CHEN Weijuan, et al. Unobtrusive and continuous BCG-based human identification using a microbend fiber sensor[J]. IEEE Access, 2019, 7: 72518–72527. doi: 10.1109/ACCESS.2019.2919407.
|
[27] |
ZHANG Yi, CHEN Zhihao, and HEE H I. Noninvasive measurement of heart rate and respiratory rate for perioperative infants[J]. Journal of Lightwave Technology, 2019, 37(11): 2807–2814. doi: 10.1109/JLT.2018.2883413.
|
[28] |
LYU Weimin, XU Wei, YANG Fangang, et al. Non-invasive measurement for cardiac variations using a fiber optic sensor[J]. IEEE Photonics Technology Letters, 2021, 33(18): 990–993. doi: 10.1109/LPT.2021.3078757.
|
[29] |
CUI Huiying, WANG Zhongyi, YU Bin, et al. Statistical analysis of the consistency of HRV analysis using BCG or pulse wave signals[J]. Sensors, 2022, 22(6): 2423. doi: 10.3390/s22062423.
|
[30] |
中国人民解放军总装备部. GJB 1564A-2012 飞行保护头盔通用规范[S]. 北京: 中国人民解放军总装备部, 2012. (查阅网上资料, 未找到出版信息, 请确认)(查阅网上资料, 未能确认年份信息, 请确认).
General Armaments Department of the People's Liberation Army. GJB 1564A-2012 General specifications for flight protective helmets[S]. Beijing: General Armament Department of the PLA, 2012.
|
[31] |
中国人民解放军总装备部. GJB 20A-2006 飞行员个体防护救生装备号型[S]. 北京: 中国人民解放军总装备部, 2006. (查阅网上资料, 未找到出版信息, 请确认)(查阅网上资料, 未能确认年份信息, 请确认).
General Armaments Department of the People's Liberation Army. GJB 20A-2006 Pilot personal protective and life support equipment sizes[S]. Beijing: General Armament Department of the PLA, 2006.
|
[32] |
中国人民解放军总装备部. GJB 4435–2002 飞行人员个体防护装备适体性评价方法[S]. 北京: 中国人民解放军总装备部, 2002. (查阅网上资料, 未找到出版信息, 请确认)(查阅网上资料, 未能确认年份信息, 请确认).
General Armaments Department of the People's Liberation Army. GJB 4435–2002 Assessment methods of suitability for aircrew protective equipment[S]. Beijing: General Armament Department of the PLA, 2002.
|
[33] |
赵磊, 谭颖玲, 李航, 等. 可穿戴光纤传感技术: 研究进展及未来机遇[J]. 中国科学: 物理学 力学 天文学, 2023, 53(11): 114204. doi: 10.1360/SSPMA-2023-0043.
ZHAO Lei, TAN Yingling, LI Hang, et al. Wearable fiber-optic sensors: Recent advances and future opportunities[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2023, 53(11): 114204. doi: 10.1360/SSPMA-2023-0043.
|
[34] |
XIONG Yifeng and XU Fei. Multifunctional integration on optical fiber tips: Challenges and opportunities[J]. Advanced Photonics, 2020, 2(6): 064001. doi: 10.1117/1.AP.2.6.064001.
|
[35] |
LUO Yunhan, CHEN Chaoying, XIA Kai, et al. Tungsten disulfide (WS2) based all-fiber-optic humidity sensor[J]. Optics Express, 2016, 24(8): 8956–8966. doi: 10.1364/OE.24.008956.
|
[36] |
LI Jin, CHOI D Y, and SMIETANA M. Editorial: Novel smart materials for optical fiber sensor development[J]. Frontiers in Materials, 2021, 8: 671086. doi: 10.3389/fmats.2021.671086.
|
[37] |
GUO Jingjing, TUO Jialin, SUN Jiangtao, et al. Stretchable multimodal photonic sensor for wearable multiparameter health monitoring[J]. Advanced Materials, 2025, 37(5): 2412322. doi: 10.1002/adma.202412322.
|
[38] |
ZHAO Lei, WU Bei, NIU Yao, et al. Soft optoelectronic sensors with deep learning for gesture recognition[J]. Advanced Materials Technologies, 2022, 7(11): 2101698. doi: 10.1002/admt.202101698.
|
[39] |
WANG Shipeng, WANG Xiaoyu, WANG Shan, et al. Optical-nanofiber-enabled gesture-recognition wristband for human-machine interaction with the assistance of machine learning[J]. Advanced Intelligent Systems, 2023, 5(7): 2200412. doi: 10.1002/aisy.202200412.
|
[40] |
余海波, 张翼, 陈文龙, 等. 传感器及可穿戴设备[P]. 中国, CN201811150889.6, 2018-09-29.
YU Haibo, ZHANG Yi, CHEN Wenlong, et al. Sensor and wearable equipment[P]. CN, CN201811150889.6, 2018-09-29.
|
[41] |
VAVRINSKY E, ESFAHANI N E, HAUSNER M, et al. The current state of optical sensors in medical wearables[J]. Biosensors, 2022, 12(4): 217. doi: 10.3390/bios12040217.
|
[42] |
KARIMIAN S, ALI M M, MCAFEE M, et al. Challenges in adapting fibre optic sensors for biomedical applications[J]. Biosensors, 2025, 15(5): 312. doi: 10.3390/bios15050312.
|
[43] |
WANG Xin, ZHOU Hongyou, CHEN Meihua, et al. Wearable ultrasensitive and rapid human physiological monitoring based on microfiber Sagnac interferometer[J]. Science China Information Sciences, 2024, 67(3): 132403. doi: 10.1007/s11432-023-3870-1.
|
[44] |
VILLORDO-JIMENEZ I, TORRES-CRUZ N, MENCHACA-MENDEZ R, et al. Distance-based queuing for scalable and reliable linear wireless sensor networks in smart cities[J]. Sensors, 2024, 24(7): 2023. doi: 10.3390/s24072023.
|
[45] |
江慧娜, 吕高冲, 李首德, 等. 基于经验小波变换的BCG信号提取方法研究[J]. 计算技术与自动化, 2022, 41(1): 66–71. doi: 10.16339/j.cnki.jsjsyzdh.202201012.
JIANG Huina, LV Gaochong, LI Shoude, et al. Research on BCG signal extraction method based on expirical wavelet transformation[J]. Computing Technology and Automation, 2022, 41(1): 66–71. doi: 10.16339/j.cnki.jsjsyzdh.202201012.
|
[46] |
DZIUDA Ł, KREJ M, and SKIBNIEWSKI F W. Fiber Bragg grating strain sensor incorporated to monitor patient vital signs during MRI[J]. IEEE Sensors Journal, 2013, 13(12): 4986–4991. doi: 10.1109/JSEN.2013.2279160.
|
[47] |
郑小涵, 朱岩, 杨越琪, 等. 基于心冲击信号的心率检测方法[J]. 中国医学物理学杂志, 2021, 38(11): 1405–1411. doi: 10.3969/j.issn.1005-202X.2021.11.016.
ZHENG Xiaohan, ZHU Yan, YANG Yueqi, et al. Heart rate detection based on ballistocardiogram signals[J]. Chinese Journal of Medical Physics, 2021, 38(11): 1405–1411. doi: 10.3969/j.issn.1005-202X.2021.11.016.
|
[48] |
谢从晋, 杨柳. 心率变异性信号的检测与仿真分析[J]. 信息技术, 2024(9): 55–63,70. doi: 10.13274/j.cnki.hdzj.2024.09.008.
XIE Congjin and YANG Liu. Detection and simulation analysis of HRV signal[J]. Information Technology, 2024(9): 55–63,70. doi: 10.13274/j.cnki.hdzj.2024.09.008.
|
[49] |
林红波, 薛剑鸣, 褚海婷. 基于变分模态分解的心冲击信号分析与提取实验设计[J]. 实验技术与管理, 2021, 38(12): 133–137,174. doi: 10.16791/j.cnki.sjg.2021.12.026.
LIN Hongbo, XUE Jianming, and CHU Haiting. Design on analysis and extraction experiment of ballistocardiogram signal based on VMD[J]. Experimental Technology and Management, 2021, 38(12): 133–137,174. doi: 10.16791/j.cnki.sjg.2021.12.026.
|
[50] |
BLAND J M and ALTMAN D G. Statistical methods for assessing agreement between two methods of clinical measurement[J]. The Lancet, 1986, 327(8476): 307–310. doi: 10.1016/S0140-6736(86)90837-8.
|
[51] |
杨丹, 徐彬, 叶琳琳, 等. 心脏心冲击信号降噪方法研究[J]. 生物医学工程学杂志, 2014, 31(6): 1368–1472. doi: 10.7507/1001-5515.20140259.
YANG Dan, XU Bin, YE Linlin, et al. De-noising method research of ballistocardiogram signal[J]. Journal of Biomedical Engineering, 2014, 31(6): 1368–1372. doi: 10.7507/1001-5515.20140259.
|
[52] |
姜星, 耿读艳, 张园园, 等. 基于EMD-ICA的心冲击信号降噪研究[J]. 中国生物医学工程学报, 2019, 38(2): 138–145. doi: 10.3969/j.issn.0258-8021.2019.02.002.
JIANG Xing, GENG Duyan, ZHANG Yuanyuan, et al. BCG signal de-noising method research based on EMD-ICA[J]. Chinese Journal of Biomedical Engineering, 2019, 38(2): 138–145. doi: 10.3969/j.issn.0258-8021.2019.02.002.
|