Advanced Search
Turn off MathJax
Article Contents
ZHAO Yanpeng, LI Falin, LI Xuan, YU Haibo, CAO Zhengtao, ZHANG Yi. Research and Design of a Ballistocardiogram-Based Heart Rate Variability (HRV) Monitoring Device Integrated into Pilot Helmets[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250342
Citation: ZHAO Yanpeng, LI Falin, LI Xuan, YU Haibo, CAO Zhengtao, ZHANG Yi. Research and Design of a Ballistocardiogram-Based Heart Rate Variability (HRV) Monitoring Device Integrated into Pilot Helmets[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250342

Research and Design of a Ballistocardiogram-Based Heart Rate Variability (HRV) Monitoring Device Integrated into Pilot Helmets

doi: 10.11999/JEIT250342 cstr: 32379.14.JEIT250342
  • Received Date: 2025-04-30
  • Rev Recd Date: 2025-08-19
  • Available Online: 2025-09-01
  •   Objective  Conventional Heart Rate Variability (HRV) monitoring in aviation is limited by bulky wearable devices that require direct skin contact, are prone to electromagnetic interference during flight, and suffer from electrode displacement during high-G maneuvers. These constraints hinder continuous physiological monitoring, which is critical for flight safety. This study presents a non-contact monitoring approach integrated into pilot helmets, utilizing BallistoCardioGram (BCG) technology to detect cardiac mechanical activity via helmet-mounted inertial sensors. The objective is to establish a novel physiological monitoring paradigm that eliminates the need for skin–electrode interfaces while achieving measurement accuracy suitable for aviation operational standards.  Methods  Hardware ConfigurationA patented BCG sensing module is embedded within the occipital stabilization system of flight protective helmets. Miniaturized, high-sensitivity inertial sensors interface with proprietary signal conditioning circuits that execute a three-stage physiological signal refinement process. First, primary analog amplification scales microvolt-level inputs to measurable voltage ranges. Second, a fourth-order Butterworth bandpass filter (0.5–20 Hz) isolates cardiac mechanical signatures. Third, analog-to-digital conversion quantizes the signals at a 250 Hz sampling rate. Physical integration complies with military equipment standards for helmet structural integrity and ergonomic performance, ensuring full compatibility with existing flight gear without compromising protection or pilot comfort during extended missions.Computational Framework A multi-layer signal processing architecture is implemented to extract physiological features. Raw BCG signals undergo five-level discrete wavelet transformation using Daubechies-4 basis functions, effectively separating cardiac components from respiratory modulation and motion-induced artifacts. J-wave identification is achieved through dual-threshold detection: morphological amplitudes exceeding three times the local baseline standard deviation and temporal positioning within 200 ms sliding analysis windows. Extracted J–J intervals are treated as functional analogs of ElectroCardioGram (ECG)-derived R–R intervals. Time-domain HRV metrics are computed as follows: (1) Standard Deviation of NN intervals (SDNN), representing overall autonomic modulation; (2) Root Mean Square of Successive Differences (RMSSD), indicating parasympathetic activity; (3) Percentage of adjacent intervals differing by more than 50 ms (pNN50). Frequency-domain analysis applies Fourier transformation to quantify Low-Frequency (LF: 0.04–0.15 Hz) and High-Frequency (HF: 0.15–0.4 Hz) spectral powers. The LF/HF ratio is used to assess sympathetic–parasympathetic balance. The entire processing pipeline is optimized for real-time execution under in-flight operational conditions.  Results and Discussions  System validation is conducted under simulated flight conditions to evaluate physiological monitoring performance. Signal acquisition is found to be reliable across static, turbulent, and high-G scenarios, with consistent capture of BCG waveforms. Quantitative comparisons with synchronized ECG recordings show strong agreement between measurement modalities: (1) SDNN: 95.80%; (2) RMSSD: 94.08%; (3) LF/HF ratio: 92.86%. These results demonstrate that the system achieves physiological measurement equivalence to established clinical standards. Artifact suppression is effectively performed by the wavelet-based signal processing framework, which maintains waveform integrity under conditions of aircraft vibration and rapid gravitational transition—conditions where conventional ECG monitoring often fails. Among tested sensor placements, the occipital position exhibits the highest signal-to-noise ratio. Operational stability is maintained during continuous 6-hour monitoring sessions, with no observed signal degradation. This long-duration robustness indicates suitability for extended flight operations.Validation results indicate that the BCG-based approach addresses three primary limitations associated with ECG systems in aviation. The removal of electrode–skin contact mitigates the risk of contact dermatitis during prolonged wear. Non-contact sensing eliminates susceptibility to electromagnetic interference generated by radar and communication systems. Furthermore, mechanical coupling ensures signal continuity during abrupt gravitational changes, which typically displace ECG electrodes and cause signal dropout. The wavelet decomposition method is particularly effective in attenuating rotorcraft harmonic vibrations and turbulence-induced high-frequency noise. Autonomic nervous system modulation is reliably captured through pulse transit time variability, which aligns with neurocardiac regulation indices derived from ECG. Two operational considerations are identified. First, respiratory coupling under hyperventilation may introduce artifacts that require additional filtering. Second, extreme cervical flexion exceeding 45 degrees may degrade signal quality, indicating the potential benefit of redundant sensor configurations under such conditions.  Conclusions  This study establishes a functional, helmet-integrated BCG monitoring system capable of delivering medical-grade HRV metrics without compromising flight safety protocols. The technology represents a shift from contact-based to non-contact physiological monitoring in aviation settings. Future system development will incorporate: (1) Infrared eye-tracking modules to assess blink interval variability for objective fatigue evaluation; (2) Dry-contact electroencephalography sensors to quantify prefrontal cortex activity and assess cognitive workload; (3) Multimodal data fusion algorithms to generate unified indices of physiological strain. The integrated framework aims to enable real-time pilot state awareness during critical operations such as aerial combat maneuvers, hypoxia exposure, and emergency responses. Further technology maturation will prioritize operational validation across diverse aircraft platforms and environmental conditions. System implementation remains fully compliant with military equipment specifications and is positioned for future translation to commercial aviation and human factors research. Broader applications include astronaut physiological monitoring during spaceflight missions and enhanced safety systems in high-performance motorsports.
  • loading
  • [1]
    张燕雯, 张泉清, 邱婧婧, 等. 军机飞行员疲劳监测技术现状及发展趋势分析[C]. 第九届中国航空学会青年科技论坛论文集, 西安, 2020: 786–790. doi: 10.26914/c.cnkihy.2020.052347.

    ZHANG Yanwen, ZHANG Quanqing, QIU Jingjing, et al. Analysis the status quo and development trend of fatigue monitoringtechnology for military pilots[C]. The 9th Youth Science and Technology Forum of the Chinese Society of Aeronautics and Astronautics, Xi’an, China, 2020: 786–790. doi: 10.26914/c.cnkihy.2020.052347. (查阅网上资料,未找到标黄信息,请确认).
    [2]
    SUMMERFIELD D, RASLAU D, JOHNSON B, et al. Physiologic challenges to pilots of modern high performance aircraft[M]. KUŞHAN M C. Aircraft Technology. London: IntechOpen, 2018: 566–570. doi: 10.5772/intechopen.75982.
    [3]
    FLOREA A D, ARGHIR S N, CHIRA A I, et al. Advancements in monitoring physical fatigue in aviation: A comprehensive analysis of state-of-the-art ECG sensor technologies[C]. Proceedings of the 2nd International Conference on Cognitive Aircraft Systems, Toulouse, France, 2024: 35–42 . DOI: 10.5220/0012950000004562.
    [4]
    李洁, 李晟, 荆忱, 等. 高性能战斗机飞行员高空缺氧训练心电图变化分析[J]. 华南国防医学杂志, 2019, 33(1): 39–41,57. doi: 10.13730/j.issn.1009-2595.2019.01.010.

    LI Jie, LI Sheng, JING Chen, et al. Analysis of electrocardiogram changes of high performance fighter pilots under high altitude hypoxia training[J]. Military Medical Journal of South China, 2019, 33(1): 39–41,57. doi: 10.13730/j.issn.1009-2595.2019.01.010.
    [5]
    牛慧茹, 李姣姣, 李硕, 等. 军队作训人员动态心电图监测结果[J]. 心脏杂志, 2024, 36(5): 527–531,536. doi: 10.12125/j.chj.202311041.

    NIU Huiru, LI Jiaojiao, LI Shuo, et al. Analysis of monitoring results of Holter electrocardiogram in military trainers[J]. Chinese Heart Journal, 2024, 36(5): 527–531,536. doi: 10.12125/j.chj.202311041.
    [6]
    黄诗童, 张威强, 张朋柱. 基于HRV分析的可穿戴心电仪精神疲劳检测[J]. 计算机应用研究, 2019, 36(7): 2093–2097,2103. doi: 10.19734/j.issn.1001-3695.2018.05.0262.

    HUANG Shitong, ZHANG Weiqiang, and ZHANG Pengzhu. Detection of mental fatigue with wearable ECG devices based on HRV analysis[J]. Application Research of Computers, 2019, 36(7): 2093–2097,2103. doi: 10.19734/j.issn.1001-3695.2018.05.0262.
    [7]
    KIM K B and BAEK H J. Photoplethysmography in wearable devices: A comprehensive review of technological advances, current challenges, and future directions[J]. Electronics, 2023, 12(13): 2923. doi: 10.3390/electronics12132923.
    [8]
    BOURDILLON N, JEANNERET F, NILCHIAN M, et al. Sleep deprivation deteriorates heart rate variability and photoplethysmography[J]. Frontiers in Neuroscience, 2021, 15: 642548. doi: 10.3389/fnins.2021.642548.
    [9]
    CHROUSOS G P, PAPADOPOULOU-MARKETOU N, BACOPOULOU F, et al. Photoplethysmography (PPG)-determined heart rate variability (HRV) and extracellular water (ECW) in the evaluation of chronic stress and inflammation[J]. Hormones, 2022, 21(3): 383–390. doi: 10.1007/s42000-021-00341-y.
    [10]
    SHEN Haiming, HAO Meiqing, REN Jiawei, et al. Experimental study on human HRV under different ventilation conditions in aircraft cockpit[C]. CSAA/IET International Conference on Aircraft Utility Systems, Xi'an, China, 2024: 489–493. doi: 10.1049/icp.2024.2938.
    [11]
    ZHU Wenbing, ZHANG Chenyang, LIU Chuang, et al. Assessment of pilot mental workload based on physiological signals: A real helicopter cross-country flight study[C]. 2023 IEEE 5th International Conference on Civil Aviation Safety and Information Technology, Dali, China, 2023: 638–643. doi: 10.1109/ICCASIT58768.2023.10351548.
    [12]
    JAAFAR R and ROZALI M A A. Estimation of breathing rate and heart rate from photoplethysmogram[C]. 2017 6th International Conference on Electrical Engineering and Informatics, Langkawi, Malaysia, 2017: 1–4. doi: 10.1109/ICEEI.2017.8312414.
    [13]
    陈阳. 基于PPG的去运动伪影及心率估计方法研究[D]. [硕士论文], 电子科技大学, 2019.

    CHEN Yang. Research on removal of motion artifact and heart rate estimation method based on PPG[D]. [Master dissertation], University of Electronic Science and Technology of China, 2019.
    [14]
    张加宏, 孟辉, 谢丽君, 等. 基于心冲击图和BP神经网络的心率异常分类研究[J]. 数据采集与处理, 2021, 36(3): 565–576. doi: 10.16337/j.1004-9037.2021.03.014.

    ZHANG Jiahong, MENG Hui, XIE Lijun, et al. Abnormal heart rate classification based on ballistocardiogram and BP neural network[J]. Journal of Data Acquisition & Processing, 2021, 36(3): 565–576. doi: 10.16337/j.1004-9037.2021.03.014.
    [15]
    李倩, 王飞, 刘芊, 等. 心冲击图信号的采集和特征分析及其应用[J]. 中国医学物理学杂志, 2020, 37(1): 83–89. doi: 10.3969/j.issn.1005-202X.2020.01.017.

    LI Qian, WANG Fei, LIU Qian, et al. Acquisition, feature analysis and application of ballistocardiogram signals[J]. Chinese Journal of Medical Physics, 2020, 37(1): 83–89. doi: 10.3969/j.issn.1005-202X.2020.01.017.
    [16]
    蒋文俊, 曹新生. BCG技术发展现状及其在航空航天医学中的应用前景[J]. 心脏杂志, 2025, 37(1): 68–72. doi: 10.12125/j.chj.202403099.

    JIANG Wenjun and CAO Xinsheng. Current state of ballistocardiogram development and its application prospects in aerospace medicine[J]. Chinese Heart Journal, 2025, 37(1): 68–72. doi: 10.12125/j.chj.202403099.
    [17]
    ROSHAN S M and PARK E J. Optimal head-mounted IMU placement for heart rate detection using ballistography[C]. 2024 46th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Orlando, USA, 2024: 1–6. doi: 10.1109/EMBC53108.2024.10782353.
    [18]
    SHIN S, MOUSAVI A S, LYLE S, et al. Posture-dependent variability in wrist ballistocardiogram-photoplethysmogram pulse transit time: Implication to cuff-less blood pressure tracking[J]. IEEE Transactions on Biomedical Engineering, 2022, 69(1): 347–355. doi: 10.1109/TBME.2021.3094200.
    [19]
    SALAS P, MEJÍA-MUÑOZ J M, and GONZALEZ-LANDAETA R. Fog-enabled multimodal chest-worn device for systolic blood pressure monitoring[J]. IEEE Access, 2025, 13: 90345–90357. doi: 10.1109/ACCESS.2025.3571829.
    [20]
    MENG Qiushuang, LIU Chuanxu, YANG Xiaotong, et al. Fiber optic wearable curvature sensor based on taper-assisted microcavity[J]. IEEE Sensors Journal, 2024, 24(17): 27500–27506. doi: 10.1109/JSEN.2024.3427842.
    [21]
    SHEN Lingyu, WANG Zhuo, XIAO Kun, et al. WaveFlex sensor: Advancing wearable cardiorespiratory monitoring with flexible wave-shaped polymer optical fiber[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2024, 30(3): 5600209. doi: 10.1109/JSTQE.2023.3319581.
    [22]
    ZHA Bingjie, WANG Zhuo, MA Lin, et al. Intelligent wearable photonic sensing system for remote healthcare monitoring using stretchable elastomer optical fiber[J]. IEEE Internet of Things Journal, 2024, 11(10): 17317–17329. doi: 10.1109/JIOT.2024.3356574.
    [23]
    NAG A, NUTHALAPATI S, and MUKHOPADHYAY S C. Carbon fiber/polymer-based composites for wearable sensors: A review[J]. IEEE Sensors Journal, 2022, 22(11): 10235–10245. doi: 10.1109/JSEN.2022.3170313.
    [24]
    曹欣荣, 王昆, 张晶, 等. 心冲击图心率变异性分析的可行性[J]. 科技导报, 2014, 32(4/5): 86–90. doi: 10.3981/j.issn.1000-7857.2014.h1.014.

    CAO Xinrong, WANG Kun, ZHANG Jing, et al. Possibility of heart rate variability analysis using ballistocardiogram[J]. Science & Technology Review, 2014, 32(4/5): 86–90. doi: 10.3981/j.issn.1000-7857.2014.h1.014.
    [25]
    段亚, 冯月, 彭冉, 等. 面向飞行作业人员的实时疲劳监测模型研究[J]. 飞行力学, 2024, 42(2): 68–74. doi: 10.13645/j.cnki.f.d.20240205.001.

    DUAN Ya, FENG Yue, PENG Ran, et al. Research on real-time fatigue monitoring model for flight operators[J]. Flight Dynamics, 2024, 42(2): 68–74. doi: 10.13645/j.cnki.f.d.20240205.001.
    [26]
    ZHANG Yi, CHEN Zhihao, CHEN Weijuan, et al. Unobtrusive and continuous BCG-based human identification using a microbend fiber sensor[J]. IEEE Access, 2019, 7: 72518–72527. doi: 10.1109/ACCESS.2019.2919407.
    [27]
    ZHANG Yi, CHEN Zhihao, and HEE H I. Noninvasive measurement of heart rate and respiratory rate for perioperative infants[J]. Journal of Lightwave Technology, 2019, 37(11): 2807–2814. doi: 10.1109/JLT.2018.2883413.
    [28]
    LYU Weimin, XU Wei, YANG Fangang, et al. Non-invasive measurement for cardiac variations using a fiber optic sensor[J]. IEEE Photonics Technology Letters, 2021, 33(18): 990–993. doi: 10.1109/LPT.2021.3078757.
    [29]
    CUI Huiying, WANG Zhongyi, YU Bin, et al. Statistical analysis of the consistency of HRV analysis using BCG or pulse wave signals[J]. Sensors, 2022, 22(6): 2423. doi: 10.3390/s22062423.
    [30]
    中国人民解放军总装备部. GJB 1564A-2012 飞行保护头盔通用规范[S]. 北京: 中国人民解放军总装备部, 2012. (查阅网上资料, 未找到出版信息, 请确认)(查阅网上资料, 未能确认年份信息, 请确认).

    General Armaments Department of the People's Liberation Army. GJB 1564A-2012 General specifications for flight protective helmets[S]. Beijing: General Armament Department of the PLA, 2012.
    [31]
    中国人民解放军总装备部. GJB 20A-2006 飞行员个体防护救生装备号型[S]. 北京: 中国人民解放军总装备部, 2006. (查阅网上资料, 未找到出版信息, 请确认)(查阅网上资料, 未能确认年份信息, 请确认).

    General Armaments Department of the People's Liberation Army. GJB 20A-2006 Pilot personal protective and life support equipment sizes[S]. Beijing: General Armament Department of the PLA, 2006.
    [32]
    中国人民解放军总装备部. GJB 4435–2002 飞行人员个体防护装备适体性评价方法[S]. 北京: 中国人民解放军总装备部, 2002. (查阅网上资料, 未找到出版信息, 请确认)(查阅网上资料, 未能确认年份信息, 请确认).

    General Armaments Department of the People's Liberation Army. GJB 4435–2002 Assessment methods of suitability for aircrew protective equipment[S]. Beijing: General Armament Department of the PLA, 2002.
    [33]
    赵磊, 谭颖玲, 李航, 等. 可穿戴光纤传感技术: 研究进展及未来机遇[J]. 中国科学: 物理学 力学 天文学, 2023, 53(11): 114204. doi: 10.1360/SSPMA-2023-0043.

    ZHAO Lei, TAN Yingling, LI Hang, et al. Wearable fiber-optic sensors: Recent advances and future opportunities[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2023, 53(11): 114204. doi: 10.1360/SSPMA-2023-0043.
    [34]
    XIONG Yifeng and XU Fei. Multifunctional integration on optical fiber tips: Challenges and opportunities[J]. Advanced Photonics, 2020, 2(6): 064001. doi: 10.1117/1.AP.2.6.064001.
    [35]
    LUO Yunhan, CHEN Chaoying, XIA Kai, et al. Tungsten disulfide (WS2) based all-fiber-optic humidity sensor[J]. Optics Express, 2016, 24(8): 8956–8966. doi: 10.1364/OE.24.008956.
    [36]
    LI Jin, CHOI D Y, and SMIETANA M. Editorial: Novel smart materials for optical fiber sensor development[J]. Frontiers in Materials, 2021, 8: 671086. doi: 10.3389/fmats.2021.671086.
    [37]
    GUO Jingjing, TUO Jialin, SUN Jiangtao, et al. Stretchable multimodal photonic sensor for wearable multiparameter health monitoring[J]. Advanced Materials, 2025, 37(5): 2412322. doi: 10.1002/adma.202412322.
    [38]
    ZHAO Lei, WU Bei, NIU Yao, et al. Soft optoelectronic sensors with deep learning for gesture recognition[J]. Advanced Materials Technologies, 2022, 7(11): 2101698. doi: 10.1002/admt.202101698.
    [39]
    WANG Shipeng, WANG Xiaoyu, WANG Shan, et al. Optical-nanofiber-enabled gesture-recognition wristband for human-machine interaction with the assistance of machine learning[J]. Advanced Intelligent Systems, 2023, 5(7): 2200412. doi: 10.1002/aisy.202200412.
    [40]
    余海波, 张翼, 陈文龙, 等. 传感器及可穿戴设备[P]. 中国, CN201811150889.6, 2018-09-29.

    YU Haibo, ZHANG Yi, CHEN Wenlong, et al. Sensor and wearable equipment[P]. CN, CN201811150889.6, 2018-09-29.
    [41]
    VAVRINSKY E, ESFAHANI N E, HAUSNER M, et al. The current state of optical sensors in medical wearables[J]. Biosensors, 2022, 12(4): 217. doi: 10.3390/bios12040217.
    [42]
    KARIMIAN S, ALI M M, MCAFEE M, et al. Challenges in adapting fibre optic sensors for biomedical applications[J]. Biosensors, 2025, 15(5): 312. doi: 10.3390/bios15050312.
    [43]
    WANG Xin, ZHOU Hongyou, CHEN Meihua, et al. Wearable ultrasensitive and rapid human physiological monitoring based on microfiber Sagnac interferometer[J]. Science China Information Sciences, 2024, 67(3): 132403. doi: 10.1007/s11432-023-3870-1.
    [44]
    VILLORDO-JIMENEZ I, TORRES-CRUZ N, MENCHACA-MENDEZ R, et al. Distance-based queuing for scalable and reliable linear wireless sensor networks in smart cities[J]. Sensors, 2024, 24(7): 2023. doi: 10.3390/s24072023.
    [45]
    江慧娜, 吕高冲, 李首德, 等. 基于经验小波变换的BCG信号提取方法研究[J]. 计算技术与自动化, 2022, 41(1): 66–71. doi: 10.16339/j.cnki.jsjsyzdh.202201012.

    JIANG Huina, LV Gaochong, LI Shoude, et al. Research on BCG signal extraction method based on expirical wavelet transformation[J]. Computing Technology and Automation, 2022, 41(1): 66–71. doi: 10.16339/j.cnki.jsjsyzdh.202201012.
    [46]
    DZIUDA Ł, KREJ M, and SKIBNIEWSKI F W. Fiber Bragg grating strain sensor incorporated to monitor patient vital signs during MRI[J]. IEEE Sensors Journal, 2013, 13(12): 4986–4991. doi: 10.1109/JSEN.2013.2279160.
    [47]
    郑小涵, 朱岩, 杨越琪, 等. 基于心冲击信号的心率检测方法[J]. 中国医学物理学杂志, 2021, 38(11): 1405–1411. doi: 10.3969/j.issn.1005-202X.2021.11.016.

    ZHENG Xiaohan, ZHU Yan, YANG Yueqi, et al. Heart rate detection based on ballistocardiogram signals[J]. Chinese Journal of Medical Physics, 2021, 38(11): 1405–1411. doi: 10.3969/j.issn.1005-202X.2021.11.016.
    [48]
    谢从晋, 杨柳. 心率变异性信号的检测与仿真分析[J]. 信息技术, 2024(9): 55–63,70. doi: 10.13274/j.cnki.hdzj.2024.09.008.

    XIE Congjin and YANG Liu. Detection and simulation analysis of HRV signal[J]. Information Technology, 2024(9): 55–63,70. doi: 10.13274/j.cnki.hdzj.2024.09.008.
    [49]
    林红波, 薛剑鸣, 褚海婷. 基于变分模态分解的心冲击信号分析与提取实验设计[J]. 实验技术与管理, 2021, 38(12): 133–137,174. doi: 10.16791/j.cnki.sjg.2021.12.026.

    LIN Hongbo, XUE Jianming, and CHU Haiting. Design on analysis and extraction experiment of ballistocardiogram signal based on VMD[J]. Experimental Technology and Management, 2021, 38(12): 133–137,174. doi: 10.16791/j.cnki.sjg.2021.12.026.
    [50]
    BLAND J M and ALTMAN D G. Statistical methods for assessing agreement between two methods of clinical measurement[J]. The Lancet, 1986, 327(8476): 307–310. doi: 10.1016/S0140-6736(86)90837-8.
    [51]
    杨丹, 徐彬, 叶琳琳, 等. 心脏心冲击信号降噪方法研究[J]. 生物医学工程学杂志, 2014, 31(6): 1368–1472. doi: 10.7507/1001-5515.20140259.

    YANG Dan, XU Bin, YE Linlin, et al. De-noising method research of ballistocardiogram signal[J]. Journal of Biomedical Engineering, 2014, 31(6): 1368–1372. doi: 10.7507/1001-5515.20140259.
    [52]
    姜星, 耿读艳, 张园园, 等. 基于EMD-ICA的心冲击信号降噪研究[J]. 中国生物医学工程学报, 2019, 38(2): 138–145. doi: 10.3969/j.issn.0258-8021.2019.02.002.

    JIANG Xing, GENG Duyan, ZHANG Yuanyuan, et al. BCG signal de-noising method research based on EMD-ICA[J]. Chinese Journal of Biomedical Engineering, 2019, 38(2): 138–145. doi: 10.3969/j.issn.0258-8021.2019.02.002.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (17) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return