Citation: | WU Tao, JI Qionghui, XIAN Xingping, QIAO Shaojie, WANG Chao, CUI Canyixing. Entropy-Driven Black-box Transferable Adversarial Attack Method for Graph Neural Networks[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250303 |
[1] |
吴涛, 曹新汶, 先兴平, 等. 图神经网络对抗攻击与鲁棒性评测前沿进展[J]. 计算机科学与探索, 2024, 18(8): 1935–1959. doi: 10.3778/j.issn.1673-9418.2311117.
WU Tao, CAO Xinwen, XIAN Xingping, et al. Advances of adversarial attacks and robustness evaluation for graph neural networks[J]. Journal of Frontiers of Computer Science & Technology, 2024, 18(8): 1935–1959. doi: 10.3778/j.issn.1673-9418.2311117.
|
[2] |
MU Jiaming, WANG Binghui, LI Qi, et al. A hard label black-box adversarial attack against graph neural networks[C]. Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security, Virtual Event, 2021: 108–125. doi: 10.1145/3460120.3484796. (查阅网上资料,未找到本条文献出版地信息,请确认).
|
[3] |
ZÜGNER D, AKBARNEJAD A, and GÜNNEMANN S. Adversarial attacks on neural networks for graph data[C]. Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, UK, 2018: 2847–2856. doi: 10.1145/3219819.3220078.
|
[4] |
ZÜGNER D and GÜNNEMANN S. Adversarial attacks on graph neural networks via meta learning[C]. 7th International Conference on Learning Representations, New Orleans, USA, 2019.
|
[5] |
SHANG Yu, ZHANG Yudong, CHEN Jiansheng, et al. Transferable structure-based adversarial attack of heterogeneous graph neural network[C]. Proceedings of the 32nd ACM International Conference on Information and Knowledge Management, Birmingham, UK, 2023: 2188–2197. doi: 10.1145/3583780.3615095.
|
[6] |
XU Kaidi, CHEN Hongge, LIU Sijia, et al. Topology attack and defense for graph neural networks: An optimization perspective[C]. Proceedings of the 28th International Joint Conference on Artificial Intelligence, Macao, China, 2019: 3961–3967. doi: 10.24963/ijcai.2019/550.
|
[7] |
ZHANG Jianping, WU Weibin, HUANG J T, et al. Improving adversarial transferability via neuron attribution-based attacks[C]. Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 14973–14982. doi: 10.1109/CVPR52688.2022.01457.
|
[8] |
WU Jun, TAN Yuejin, DENG Hongzhong, et al. Heterogeneity of scale-free networks[J]. Systems Engineering-Theory & Practice, 2007, 27(5): 101–105. doi: 10.1016/S1874-8651(08)60036-8.
|
[9] |
WANG Bing, TANG Huanwen, GUO Chonghui, et al. Entropy optimization of scale-free networks’ robustness to random failures[J]. Physica A: Statistical Mechanics and its Applications, 2006, 363(2): 591–596. doi: 10.1016/j.physa.2005.08.025.
|
[10] |
蔡萌, 杜海峰, 费尔德曼. 一种基于最大流的网络结构熵[J]. 物理学报, 2014, 63(6): 060504. doi: 10.7498/aps.63.060504.
CAI Meng, DU Haifeng, and FELDMAN M W. A new network structure entropy based on maximum flow[J]. Acta Physica Sinica, 2014, 63(6): 060504. doi: 10.7498/aps.63.060504.
|
[11] |
黄丽亚, 霍宥良, 王青, 等. 基于K-阶结构熵的网络异构性研究[J]. 物理学报, 2019, 68(1): 018901. doi: 10.7498/aps.68.20181388.
HUANG Liya, HUO Youliang, WANG Qing, et al. Network heterogeneity based on K-order structure entropy[J]. Acta Physica Sinica, 2019, 68(1): 018901. doi: 10.7498/aps.68.20181388.
|
[12] |
CARLINI N and WAGNER D. Towards evaluating the robustness of neural networks[C]. 2017 IEEE Symposium on Security and Privacy, San Jose, USA, 2017: 39–57. doi: 10.1109/SP.2017.49.
|
[13] |
WU Tao, YANG Nan, CHEN Long, et al. ERGCN: Data enhancement-based robust graph convolutional network against adversarial attacks[J]. Information Sciences, 2022, 617: 234–253. doi: 10.1016/j.ins.2022.10.115.
|
[14] |
MCCALLUM A K, NIGAM K, RENNIE J, et al. Automating the construction of internet portals with machine learning[J]. Information Retrieval, 2000, 3(2): 127–163. doi: 10.1023/A:1009953814988.
|
[15] |
GILES C L, BOLLACKER K D, and LAWRENCE S. CiteSeer: An automatic citation indexing system[C]. Proceedings of the Third ACM Conference on Digital Libraries, Pittsburgh, USA, 1998: 89–98. doi: 10.1145/276675.276685.
|
[16] |
SEN P, NAMATA G, BILGIC M, et al. Collective classification in network data[J]. AI Magazine, 2008, 29(3): 93–106. doi: 10.1609/aimag.v29i3.2157.
|
[17] |
WANG Xiao, LIU Nian, HAN Hui, et al. Self-supervised heterogeneous graph neural network with co-contrastive learning[C]. Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, Virtual Event, Singapore, 2021: 1726–1736. doi: 10.1145/3447548.3467415. (查阅网上资料,未找到本条文献出版地信息,请确认).
|
[18] |
FU Xinyu, ZHANG Jiani, MENG Ziqiao, et al. MAGNN: Metapath aggregated graph neural network for heterogeneous graph embedding[C]. Proceedings of The Web Conference 2020, Taipei, China, 2020: 2331–2341. doi: 10.1145/3366423.3380297.
|
[19] |
HAN Hui, ZHAO Tianyu, YANG Cheng, et al. OpenHGNN: An open source toolkit for heterogeneous graph neural network[C]. Proceedings of the 31st ACM International Conference on Information & Knowledge Management, Atlanta, USA, 2022: 3993–3997. doi: 10.1145/3511808.3557664.
|
[20] |
MALIK H A M, ABID F, WAHIDDIN M R, et al. Robustness of dengue complex network under targeted versus random attack[J]. Complexity, 2017, 2017(1): 2515928. doi: 10.1155/2017/2515928.
|
[21] |
WANIEK M, MICHALAK T P, WOOLDRIDGE M J, et al. Hiding individuals and communities in a social network[J]. Nature Human Behaviour, 2018, 2(2): 139–147. doi: 10.1038/s41562-017-0290-3.
|
[22] |
LIU Zihan, LUO Yun, WU Lirong, et al. Are gradients on graph structure reliable in gray-box attacks?[C]. Proceedings of the 31st ACM International Conference on Information & Knowledge Management, Atlanta, USA, 2022: 1360–1368. doi: 10.1145/3511808.3557238.
|
[23] |
LIU Zihan, LUO Yun, WU Lirong, et al. Towards reasonable budget allocation in untargeted graph structure attacks via gradient debias[C]. Proceedings of the 36th International Conference on Neural Information Processing Systems, New Orleans, USA, 2022: 2028.
|
[24] |
ZHANG Mengmei, WANG Xiao, ZHU Meiqi, et al. Robust heterogeneous graph neural networks against adversarial attacks[C]. Proceedings of the 36th AAAI Conference on Artificial Intelligence, Virtual Event, 2022: 4363–4370. doi: 10.1609/aaai.v36i4.20357. (查阅网上资料,未找到本条文献出版地信息,请确认).
|
[25] |
ZHANG Sixiao, CHEN Hongxu, SUN Xiangguo, et al. Unsupervised graph poisoning attack via contrastive loss back-propagation[C]. Proceedings of the ACM Web Conference 2022, Virtual Event, France, 2022: 1322–1330. doi: 10.1145/3485447.3512179. (查阅网上资料,未找到本条文献出版地信息,请确认).
|
[26] |
WANG Haosen, XU Can, SHI Chenglong, et al. Unsupervised heterogeneous graph rewriting attack via node clustering[C]. Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Barcelona, Spain, 2024: 3057–3068. doi: 10.1145/3637528.3671716.
|
[27] |
KIPF T N and WELLING M. Semi-supervised classification with graph convolutional networks[C]. 5th International Conference on Learning Representations, Toulon, France, 2017.
|
[28] |
VELIČKOVIĆ P, CUCURULL G, CASANOVA A, et al. Graph attention networks[J]. arXiv preprint arXiv: 1710.10903, 2017. doi: 10.48550/arXiv.1710.10903. (查阅网上资料,请作者核对文献类型及格式是否正确).
|
[29] |
WU F, SOUZA A, ZHANG Tianyi, et al. Simplifying graph convolutional networks[C]. Proceedings of the 36th International Conference on Machine Learning, Long Beach, USA, 2019: 6861–6871.
|
[30] |
WANG Xiao, JI Houye, SHI Chuan, et al. Heterogeneous graph attention network[C]. The World Wide Web Conference, San Francisco, USA, 2019: 2022–2032. doi: 10.1145/3308558.3313562.
|
[31] |
HU Ziniu, DONG Yuxiao, WANG Kuansan, et al. Heterogeneous graph transformer[C]. Proceedings of The Web Conference 2020, Taipei, China, 2020: 2704–2710. doi: 10.1145/3366423.3380027.
|
[32] |
LV Qingsong, DING Ming, LIU Qiang, et al. Are we really making much progress? Revisiting, benchmarking and refining heterogeneous graph neural networks[C]. Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, Singapore, Singapore, 2021: 1150–1160. doi: 10.1145/3447548.3467350.
|
[33] |
SCHLICHTKRULL M, KIPF T N, BLOEM P, et al. Modeling relational data with graph convolutional networks[C]. 15th International Conference on The Semantic Web, Heraklion, Greece, 2018: 593–607. doi: 10.1007/978-3-319-93417-4_38.
|
[34] |
YAN Yeyu, ZHAO Zhongying, YANG Zhan, et al. A fast and robust attention-free heterogeneous graph convolutional network[J]. IEEE Transactions on Big Data, 2024, 10(5): 669–681. doi: 10.1109/TBDATA.2024.3375152.
|