Citation: | MA Ruhui, HE Shiyang, CAO Jin, LIU Kui, LI Hui, QIU Yuan. Unmanned Aircraft Vehicle-assisted Multi Cluster Concurrent Authentication Scheme for Internet of Things Devices[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250279 |
[1] |
MACH P and BECVAR Z. Mobile edge computing: A survey on architecture and computation offloading[J]. IEEE Communications Surveys & Tutorials, 2017, 19(3): 1628–1656. doi: 10.1109/COMST.2017.2682318.
|
[2] |
ZHANG Zhanpeng, XU Chen, LI Zewu, et al. Deep reinforcement learning for aerial data collection in hybrid-powered NOMA-IoT networks[J]. IEEE Internet of Things Journal, 2023, 10(2): 1761–1774. doi: 10.1109/JIOT.2022.3209980.
|
[3] |
3GPP. Study on security aspects of uncrewed aerial systems (UAS) (Release 17)[R]. 3GPP TR 33.854 V0.4. 0, 2021.
|
[4] |
MA Ruhui, CAO Jin, HE Shiyang, et al. A UAV-assisted UE access authentication scheme for 5G/6G network[J]. IEEE Transactions on Network and Service Management, 2024, 21(2): 2426–2444. doi: 10.1109/TNSM.2023.3341829.
|
[5] |
AYDIN Y, KURT G K, OZDEMIR E, et al. Group handover for drone base stations[J]. IEEE Internet of Things Journal, 2021, 8(18): 13876–13887. doi: 10.1109/JIOT.2021.3068297.
|
[6] |
CHOI J, KWON D, SON S, et al. A PUF-based lightweight authentication scheme for UAV-assisted internet of vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2025. doi: 10.1109/TITS.2025.3564581. (查阅网上资料,未找到本条文献卷期页码信息,请确认并补充).
|
[7] |
NIKOOGHADAM M, AMINTOOSI H, ISLAM S K H, et al. A provably secure and lightweight authentication scheme for internet of drones for smart city surveillance[J]. Journal of Systems Architecture, 2021, 115: 101955. doi: 10.1016/j.sysarc.2020.101955.
|
[8] |
BERINI A D E, FERRAG M A, FAROU B, et al. HCALA: Hyperelliptic curve-based anonymous lightweight authentication scheme for internet of drones[J]. Pervasive and Mobile Computing, 2023, 92: 101798. doi: 10.1016/j.pmcj.2023.101798.
|
[9] |
YU S, DAS A K, and PARK Y. RLBA-UAV: A robust and lightweight blockchain-based authentication and key agreement scheme for PUF-enabled UAVs[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(12): 21697–21708. doi: 10.1109/TITS.2024.3480029.
|
[10] |
BANSAL G and SIKDAR B. A secure and efficient mutual authentication protocol framework for unmanned aerial vehicles[C]. The 2021 IEEE Globecom Workshops (GC Wkshps), Madrid, Spain, 2021: 1–6. doi: 10.1109/GCWkshps52748.2021.9682006.
|
[11] |
ALLADI T, VENKATESH V, CHAMOLA V, et al. Drone-MAP: A novel authentication scheme for drone-assisted 5G networks[C]. The IEEE INFOCOM 2021 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Vancouver, Canada, 2021: 1–6. doi: 10.1109/INFOCOMWKSHPS51825.2021.9484594.
|
[12] |
BANSAL G and SIKDAR B. Achieving secure and reliable UAV authentication: A Shamir’s secret sharing based approach[J]. IEEE Transactions on Network Science and Engineering, 2024, 11(4): 3598–3610. doi: 10.1109/TNSE.2024.3381599.
|
[13] |
PU Cong, WALL A, CHOO K K R, et al. A lightweight and privacy-preserving mutual authentication and key agreement protocol for internet of drones environment[J]. IEEE Internet of Things Journal, 2022, 9(12): 9918–9933. doi: 10.1109/JIOT.2022.3163367.
|
[14] |
KHAN M A, ULLAH I, ALKHALIFAH A, et al. A provable and privacy-preserving authentication scheme for UAV-enabled intelligent transportation systems[J]. IEEE Transactions on Industrial Informatics, 2022, 18(5): 3416–3425. doi: 10.1109/TII.2021.3101651.
|
[15] |
LOUNIS K, DING S H H, and ZULKERNINE M. D2D-MAP: A drone to drone authentication protocol using physical unclonable functions[J]. IEEE Transactions on Vehicular Technology, 2023, 72(4): 5079–5093. doi: 10.1109/TVT.2022.3224611.
|
[16] |
ALLADI T, NAREN, BANSAL G, et al. SecAuthUAV: A novel authentication scheme for UAV-ground station and UAV-UAV communication[J]. IEEE Transactions on Vehicular Technology, 2020, 69(12): 15068–15077. doi: 10.1109/TVT.2020.3033060.
|
[17] |
KARMAKAR R, KADDOUM G, and AKHRIF O. A PUF and fuzzy extractor-based UAV-ground station and UAV-UAV authentication mechanism with intelligent adaptation of secure sessions[J]. IEEE Transactions on Mobile Computing, 2024, 23(5): 3858–3875. doi: 10.1109/TMC.2023.3284216.
|
[18] |
LIU Chunpeng, HUANG Tao, and MA Maode. UAP: A system authentication protocol for UAV relay communication by UAV-assisted[J]. IEEE Open Journal of Vehicular Technology, 2025, 6: 1539–1550. doi: 10.1109/OJVT.2025.3567079.
|
[19] |
LI Jinguo, WEN Mi, and ZHANG Tao. Group-based authentication and key agreement with dynamic policy updating for MTC in LTE-A networks[J]. IEEE Internet of Things Journal, 2016, 3(3): 408–417. doi: 10.1109/JIOT.2015.2495321.
|
[20] |
CAO Jin, YAN Zheng, MA Ruhui, et al. LSAA: A lightweight and secure access authentication scheme for both UE and mMTC devices in 5G networks[J]. IEEE Internet of Things Journal, 2020, 7(6): 5329–5344. doi: 10.1109/JIOT.2020.2976740.
|
[21] |
CAO Jin, YU Pu, MA Maode, et al. Fast authentication and data transfer scheme for massive NB-IoT devices in 3GPP 5G network[J]. IEEE Internet of Things Journal, 2019, 6(2): 1561–1575. doi: 10.1109/JIOT.2018.2846803.
|
[22] |
CAO Jin, YU Pu, XIANG Xinyin, et al. Anti-quantum fast authentication and data transmission scheme for massive devices in 5G NB-IoT system[J]. IEEE Internet of Things Journal, 2019, 6(6): 9794–9805. doi: 10.1109/JIOT.2019.2931724.
|
[23] |
NAKKAR M, ALTAWY R, and YOUSSEF A. GASE: A lightweight group authentication scheme with key agreement for edge computing applications[J]. IEEE Internet of Things Journal, 2023, 10(1): 840–854. doi: 10.1109/JIOT.2022.3204335.
|
[24] |
ZHANG Xiaoyi, WU Huici, TAO Xiaofeng, et al. PUF-based lightweight group authentication for massive IoT access with insecure channel[J]. IEEE Internet of Things Journal, 2025, 12(14): 26968–26983. doi: 10.1109/JIOT.2025.3561943.
|
[25] |
REN Xiongpeng, CAO Jin, MA Maode, et al. A novel PUF-based group authentication and data transmission scheme for NB-IoT in 3GPP 5G networks[J]. IEEE Internet of Things Journal, 2022, 9(5): 3642–3656. doi: 10.1109/JIOT.2021.3098224.
|
[26] |
RAJ K, BODAPATI S, and CHATTOPADHYAY A. PUF-based lightweight mutual authentication protocol for internet of things (IoT) devices[C]. The 2024 IEEE International Symposium on Circuits and Systems (ISCAS), Singapore, Singapore, 2024: 1–5. doi: 10.1109/ISCAS58744.2024.10558672.
|
[27] |
DOLEV D and YAO A C. On the security of public key protocols[J]. IEEE Transactions on Information Theory, 1983, 29(2): 198–208. doi: 10.1109/TIT.1983.1056650.
|
[28] |
CAO Jin, LI Sheng, MA Ruhui, et al. RPRIA: Reputation and PUF-based remote identity attestation protocol for massive IoT devices[J]. IEEE Internet of Things Journal, 2022, 9(19): 19174–19187. doi: 10.1109/JIOT.2022.3164174.
|
[29] |
3GPP. 3GPP TS 38.300-2025 NR; NR and NG-RAN overall description; Stage-2 (Release 15)[S]. Valbonne: 3GPP, 2025. (查阅网上资料, 未找到本条文献出版年信息, 请确认修改是否正确).
|
[30] |
MEIER S, SCHMIDT B, CREMERS C, et al. The TAMARIN prover for the symbolic analysis of security protocols[C]. The 25th International Conference on Computer Aided Verification, Saint Petersburg, Russia, 2013: 696–701. doi: 10.1007/978-3-642-39799-8_48.
|
[31] |
BASIN D, CREMERS C, KIM T H J, et al. Design, analysis, and implementation of ARPKI: An attack-resilient public-key infrastructure[J]. IEEE Transactions on Dependable and Secure Computing, 2018, 15(3): 393–408. doi: 10.1109/TDSC.2016.2601610.
|
[32] |
BASIN D, DREIER J, HIRSCHI L, et al. A formal analysis of 5G authentication[C]. The 2018 ACM SIGSAC Conference on Computer and Communications Security, Toronto, Canada, 2018: 1383–1396. doi: 10.1145/3243734.3243846.
|
[33] |
REN Xiongpeng, CAO Jin, NIU Ben, et al. A formal analysis of 5G ProSe AKA protocols for U2N relay communication[J]. IEEE Transactions on Dependable and Secure Computing, 2025, 22(3): 2909–2924. doi: 10.1109/TDSC.2024.3522895.
|
[34] |
National Institute of Standards and Technology. Recommendation for key management: Part 1–General[R]. NIST SP 800-57 PART 1 REV. 5, 2020.
|