| Citation: | CAI Fanglin, WANG Ji, QIU Haowei. A 3D Underwater Target Tracking Algorithm with Integrated Grubbs-Information Entropy and Improved Particle Filter[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250249 |
| [1] |
刘妹琴, 韩学艳, 张森林, 等. 基于水下传感器网络的目标跟踪技术研究现状与展望[J]. 自动化学报, 2021, 47(2): 235–251. doi: 10.16383/j.aas.c190886.
LIU Meiqin, HAN Xueyan, ZHANG Senlin, et al. Research status and prospect of target tracking technologies via underwater sensor networks[J]. Acta Automatica Sinica, 2021, 47(2): 235–251. doi: 10.16383/j.aas.c190886.
|
| [2] |
苏毅珊, 张贺贺, 张瑞, 等. 水下无线传感器网络安全研究综述[J]. 电子与信息学报, 2023, 45(3): 1121–1133. doi: 10.11999/JEIT211576.
SU Yishan, ZHANG Hehe, ZHANG Rui, et al. Review of security for underwater wireless sensor networks[J]. Journal of Electronics & Information Technology, 2023, 45(3): 1121–1133. doi: 10.11999/JEIT211576.
|
| [3] |
TANG Miaoyi, LIU Meiqin, ZHANG Senlin, et al. Distributed target tracking in UWSNs under stochastic node communication scheme[J]. IEEE Sensors Journal, 2024, 24(3): 3912–3926. doi: 10.1109/JSEN.2023.3342090.
|
| [4] |
JONDHALE S R and DESHPANDE R S. Kalman filtering framework-based real time target tracking in wireless sensor networks using generalized regression neural networks[J]. IEEE Sensors Journal, 2019, 19(1): 224–233. doi: 10.1109/JSEN.2018.2873357.
|
| [5] |
DAI Yong, YU Shuanghe, YAN Yan, et al. An EKF-based fast tube MPC scheme for moving target tracking of a redundant underwater vehicle-manipulator system[J]. IEEE/ASME Transactions on Mechatronics, 2019, 24(6): 2803–2814. doi: 10.1109/TMECH.2019.2943007.
|
| [6] |
KULIKOV G Y and KULIKOVA M V. Hyperbolic-SVD-based square-root unscented Kalman filters in continuous-discrete target tracking scenarios[J]. IEEE Transactions on Automatic Control, 2022, 67(1): 366–373. doi: 10.1109/TAC.2021.3056338.
|
| [7] |
昝孟恩, 周航, 韩丹, 等. 粒子滤波目标跟踪算法综述[J]. 计算机工程与应用, 2019, 55(5): 8–17,59. doi: 10.3778/j.issn.1002-8331.1809-0242.
ZAN Meng’en, ZHOU Hang, HAN Dan, et al. Survey of particle filter target tracking algorithms[J]. Computer Engineering and Applications, 2019, 55(5): 8–17,59. doi: 10.3778/j.issn.1002-8331.1809-0242.
|
| [8] |
韩月, 陈鹏云, 沈鹏. 基于改进粒子滤波的AUV海底地形辅助定位方法[J]. 智能系统学报, 2020, 15(3): 553–559. doi: 10.11992/tis.201903027.
HAN Yue, CHEN Pengyun, and SHEN Peng. Seabed terrain-aided positioning method based on improved particle filtering for AUVs[J]. CAAI Transactions on Intelligent Systems, 2020, 15(3): 553–559. doi: 10.11992/tis.201903027.
|
| [9] |
KUPTAMETEE C and AUNSRI N. A review of resampling techniques in particle filtering framework[J]. Measurement, 2022, 193: 110836. doi: 10.1016/j.measurement.2022.110836.
|
| [10] |
岳敬轩, 王红茹, 朱东琴, 等. 基于改进粒子滤波的无人机编队协同导航算法[J]. 航空学报, 2023, 44(14): 327995. doi: 10.7527/S1000-6893.2022.27995.
YUE Jingxuan, WANG Hongru, ZHU Dongqin, et al. UAV formation cooperative navigation algorithm based on improved particle filter[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(14): 327995. doi: 10.7527/S1000-6893.2022.27995.
|
| [11] |
冉星浩, 杨路, 李春波. 基于权值优选的改进二阶中心差分粒子滤波算法[J]. 测控技术, 2020, 39(7): 68–72. doi: 10.19708/j.ckjs.2020.05.254.
RAN Xinghao, YANG Lu, and LI Chunbo. An improved second-order central difference particle filter algorithm based on weight optimization[J]. Measurement & Control Technology, 2020, 39(7): 68–72. doi: 10.19708/j.ckjs.2020.05.254.
|
| [12] |
ZHAO Hui, WANG Lifen, ZHAO Jiangtao, et al. An improved particle filter based on robustness factor and weight optimization[C]. 2021 IEEE International Conference on Electronic Technology, Communication and Information, Changchun, China, 2021: 529–532. doi: 10.1109/ICETCI53161.2021.9563362.
|
| [13] |
冉星浩, 陶建锋, 杨春晓. 基于无迹卡尔曼滤波和权值优化的改进粒子滤波算法[J]. 探测与控制学报, 2018, 40(3): 74–79.
RAN Xinghao, TAO Jianfeng, and YANG Chunxiao. An improved particle filter algorithm based on UKF and weight optimization[J]. Journal of Detection & Control, 2018, 40(3): 74–79.
|
| [14] |
张宏伟. 双站纯方位空时软约束无迹粒子滤波算法[J]. 系统工程与电子技术, 2023, 45(5): 1261–1269. doi: 10.12305/j.issn.1001-506X.2023.05.01.
ZHANG Hongwei. Dual-station unscented particle filter algorithm with spatiotemporal soft constraint[J]. Systems Engineering and Electronics, 2023, 45(5): 1261–1269. doi: 10.12305/j.issn.1001-506X.2023.05.01.
|
| [15] |
DU Sichun and QING Deng. Unscented particle filter algorithm based on divide-and-conquer sampling for target tracking[J]. Sensors, 2021, 21(6): 2236. doi: 10.3390/S21062236.
|
| [16] |
张程振, 丁元明, 杨阳. 水下目标跟踪粒子滤波算法性能分析[J]. 火力与指挥控制, 2022, 47(2): 18–24. doi: 10.3969/j.issn.1002-0640.2022.02.004.
ZHANG Chengzhen, DING Yuanming, and YANG Yang. Research on tracking performance of particle filter for tracking underwater targets[J]. Fire Control & Command Control, 2022, 47(2): 18–24. doi: 10.3969/j.issn.1002-0640.2022.02.004.
|
| [17] |
张颖, 高灵君. 基于格拉布斯准则和改进粒子滤波算法的水下传感网目标跟踪[J]. 电子与信息学报, 2019, 41(10): 2294–2301. doi: 10.11999/JEIT190079.
ZHANG Ying and GAO Lingjun. Target tracking with underwater sensor networks based on Grubbs criterion and improved particle filter algorithm[J]. Journal of Electronics & Information Technology, 2019, 41(10): 2294–2301. doi: 10.11999/JEIT190079.
|
| [18] |
朱洪波, 高衍伸. 基于K-medoids信任的分布式H∞融合滤波算法[J/OL]. 计算机工程, 1-9. https://doi.org/10.19678/j.issn.1000-3428.0069791, 2024.
ZHU Hongbo and GAO Yanshen. K-medoids-trust-based distributed H∞ fusion filtering algorithm[J/OL]. Computer Engineering, 1-9. https://doi.org/10.19678/j.issn.1000-3428.0069791, 2024.
|
| [19] |
马静, 杨晓梅, 孙书利. 带时间相关乘性噪声多传感器系统的分布式融合估计[J]. 自动化学报, 2023, 49(8): 1745–1757. doi: 10.16383/j.aas.c210147.
MA Jing, YANG Xiaomei, and SUN Shuli. Distributed fusion estimation for multi-sensor systems with time-correlated multiplicative noises[J]. Acta Automatica Sinica, 2023, 49(8): 1745–1757. doi: 10.16383/j.aas.c210147.
|
| [20] |
段战胜, 韩崇昭, 陶唐飞. 基于最小二乘准则的多传感器参数估计数据融合[J]. 计算机工程与应用, 2004, 40(15): 1–3. doi: 10.3321/j.issn:1002-8331.2004.15.001.
DUAN Zhansheng, HAN Chongzhao, and TAO Tangfei. Multi-sensor parameter estimation data fusion based on least-square criterion[J]. Computer Engineering and Applications, 2004, 40(15): 1–3. doi: 10.3321/j.issn:1002-8331.2004.15.001.
|
| [21] |
周思益, 张江梅, 冯兴华, 等. 基于改进的多传感器自适应加权融合算法研究[J]. 自动化仪表, 2021, 42(11): 58–62. doi: 10.16086/j.cnki.issn1000-0380.2021030042.
ZHOU Siyi, ZHANG Jiangmei, FENG Xinghua, et al. Research on adaptive weighted fusion algorithm based on the improved multi-sensor[J]. Process Automation Instrumentation, 2021, 42(11): 58–62. doi: 10.16086/j.cnki.issn1000-0380.2021030042.
|
| [22] |
DONG Xun, HU Gaoge, GAO Bingbing, et al. Windowing-based factor graph optimization with anomaly detection using mahalanobis distance for underwater INS/DVL/USBL integration[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 8501213. doi: 10.1109/TIM.2024.3353286.
|
| [23] |
XU Weihua, PAN Yanzhou, CHEN Xiuwei, et al. A novel dynamic fusion approach using information entropy for interval-valued ordered datasets[J]. IEEE Transactions on Big Data, 2023, 9(3): 845–859. doi: 10.1109/TBDATA.2022.3215494.
|
| [24] |
陶洋, 祝小钧, 杨柳. 基于皮尔逊相关系数和信息熵的多传感器数据融合[J]. 小型微型计算机系统, 2023, 44(5): 1075–1080. doi: 10.20009/j.cnki.21-1106/TP.2021-0698.
TAO Yang, ZHU Xiaojun, and YANG Liu. Multi-sensor data fusion based on Pearson coefficient and information entropy[J]. Journal of Chinese Computer Systems, 2023, 44(5): 1075–1080. doi: 10.20009/j.cnki.21-1106/TP.2021-0698.
|