Citation: | GUAN Siwei, HE Zhiwei, DONG Zhekang, TONG Hongtao, MA Shenhui, GAO Mingyu. Dynamic Distribution Adaptation with Higher-Order Moment Matching for Battery Pack Multi-Fault Diagnosis[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250226 |
[1] |
XU Yiming, GE Xiaohua, GUO Ruohan, et al. Recent advances in model-based fault diagnosis for lithium-ion batteries: A comprehensive review[J]. Renewable and Sustainable Energy Reviews, 2025, 207: 114922. doi: 10.1016/j.rser.2024.114922.
|
[2] |
DONG Zhekang, GU Shenyu, ZHOU Shiqi, et al. Periodic segmentation transformer-based internal short circuit detection method for battery packs[J]. IEEE Transactions on Transportation Electrification, 2025, 11(1): 3655–3666. doi: 10.1109/TTE.2024.3444453.
|
[3] |
YU Quanqing, YANG Yu, TANG Aihua, et al. Unsupervised learning for lithium-ion batteries fault diagnosis and thermal runaway early warning in real-world electric vehicles[J]. Journal of Energy Storage, 2025, 109: 115194. doi: 10.1016/j.est.2024.115194.
|
[4] |
张照娓, 郭天滋, 高明裕, 等. 电动汽车锂离子电池荷电状态估算方法研究综述[J]. 电子与信息学报, 2021, 43(7): 1803–1815. doi: 10.11999/JEIT200487.
ZHANG Z haowei, GUO Tianzi, GAO Mingyu, et al. Review of SoC estimation methods for electric vehicle Li-ion batteries[J]. Journal of Electronics & Information Technology, 2021, 43(7): 1803–1815. doi: 10.11999/JEIT200487.
|
[5] |
GUAN Siwei, HE Zhiwei, MA Shenhui, et al. Early life prediction of fast-charging battery based on feature engineering and state space models[J]. Journal of Energy Storage, 2025, 127: 116969. doi: 10.1016/j.est.2025.116969.
|
[6] |
高明裕, 蔡林辉, 孙长城, 等. 一种基于斯皮尔曼秩相关结合神经网络的电池组内部短路故障检测算法[J]. 电子与信息学报, 2022, 44(11): 3734–3747. doi: 10.11999/JEIT210975.
GAO Mingyu, CAI Linhui, SUN Changcheng, et al. An internal short circuit fault detecting of battery pack based on spearman rank correlation combined with neural network[J]. Journal of Electronics & Information Technology, 2022, 44(11): 3734–3747. doi: 10.11999/JEIT210975.
|
[7] |
HONG Zhongshen, WANG Yujie, and JIN Zhichao. Diagnosis of battery external short circuits based on an improved second-order RC fault model and recursive least squares identification method[J]. Energy, 2025, 319: 134880. doi: 10.1016/j.energy.2025.134880.
|
[8] |
CHENG Zhixiang, MIN Yuanyuan, QIN Peng, et al. A distributed thermal-pressure coupling model of large-format lithium iron phosphate battery thermal runaway[J]. Applied Energy, 2025, 378: 124875. doi: 10.1016/j.apenergy.2024.124875.
|
[9] |
XIONG Rui, SUN Xinjie, MENG Xiangfeng, et al. Advancing fault diagnosis in next-generation smart battery with multidimensional sensors[J]. Applied Energy, 2024, 364: 123202. doi: 10.1016/j.apenergy.2024.123202.
|
[10] |
ZHAO Rui, LIU Jie, and GU Junjie. Simulation and experimental study on lithium ion battery short circuit[J]. Applied Energy, 2016, 173: 29–39. doi: 10.1016/j.apenergy.2016.04.016.
|
[11] |
XIONG Rui, YU Quanqing, SHEN Weixiang, et al. A sensor fault diagnosis method for a lithium-ion battery pack in electric vehicles[J]. IEEE Transactions on Power Electronics, 2019, 34(10): 9709–9718. doi: 10.1109/TPEL.2019.2893622.
|
[12] |
LIU Zhentong and HE Hongwen. Sensor fault detection and isolation for a lithium-ion battery pack in electric vehicles using adaptive extended Kalman filter[J]. Applied Energy, 2017, 185: 2033–2044. doi: 10.1016/j.apenergy.2015.10.168.
|
[13] |
XIA Bing, SHANG Yunlong, NGUYEN T, et al. A correlation based fault detection method for short circuits in battery packs[J]. Journal of Power Sources, 2017, 337: 1–10. doi: 10.1016/j.jpowsour.2016.11.007.
|
[14] |
WANG Shunli, TANG Wu, FERNANDEZ C, et al. A novel endurance prediction method of series connected lithium-ion batteries based on the voltage change rate and iterative calculation[J]. Journal of Cleaner Production, 2019, 210: 43–54. doi: 10.1016/j.jclepro.2018.10.349.
|
[15] |
SHANG Yunlong, LU Gaopeng, KANG Yongzhe, et al. A multi-fault diagnosis method based on modified Sample Entropy for lithium-ion battery strings[J]. Journal of Power Sources, 2020, 446: 227275. doi: 10.1016/j.jpowsour.2019.227275.
|
[16] |
ZHANG Zhendong, KONG Xiangdong, ZHENG Yuejiu, et al. Real-time diagnosis of micro-short circuit for Li-ion batteries utilizing low-pass filters[J]. Energy, 2019, 166: 1013–1024. doi: 10.1016/j.energy.2018.10.160.
|
[17] |
WANG Ping, CHEN Jiqing, LAN Fengchong, et al. Multiscale feature fusion approach to early fault diagnosis in EV power battery using operational data[J]. Journal of Energy Storage, 2024, 98: 112812. doi: 10.1016/j.est.2024.112812.
|
[18] |
YANG Ruixin, XIONG Rui, HE Hongwen, et al. A fractional-order model-based battery external short circuit fault diagnosis approach for all-climate electric vehicles application[J]. Journal of Cleaner Production, 2018, 187: 950–959. doi: 10.1016/j.jclepro.2018.03.259.
|
[19] |
ZHAO Yang, LIU Peng, WANG Zhenpo, et al. Fault and defect diagnosis of battery for electric vehicles based on big data analysis methods[J]. Applied Energy, 2017, 207: 354–362. doi: 10.1016/j.apenergy.2017.05.139.
|
[20] |
ZHANG Wei, PENG Gaoliang, LI Chuanhao, et al. A new deep learning model for fault diagnosis with good anti-noise and domain adaptation ability on raw vibration signals[J]. Sensors, 2017, 17(2): 425. doi: 10.3390/s17020425.
|
[21] |
QIU Xianghui, BAI Yu, and WANG Shuangfeng. A novel unsupervised domain adaptation-based method for lithium-ion batteries state of health prognostic[J]. Journal of Energy Storage, 2024, 75: 109358. doi: 10.1016/j.est.2023.109358.
|
[22] |
GUAN Siwei, HE Zhiwei, MA Shenhui, et al. Domain adaptation with contrastive learning for lithium-ion battery packs fault diagnosis[J]. IEEE Transactions on Transportation Electrification, 2025. doi: 10.1109/TTE.2025.3582411. (查阅网上资料,未找到本条文献卷期页码信息,请确认).
|
[23] |
CAI Linhui, WANG Han, DONG Zhekang, et al. A multi-fault diagnostic method based on category-reinforced domain adaptation network for series-connected battery packs[J]. Journal of Energy Storage, 2023, 60: 106690. doi: 10.1016/j.est.2023.106690.
|
[24] |
ZHAO Zhibin, ZHANG Qiyang, YU Xiaolei, et al. Applications of unsupervised deep transfer learning to intelligent fault diagnosis: A survey and comparative study[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 3525828. doi: 10.1109/TIM.2021.3116309.
|
[25] |
ZHU Yongchun, ZHUANG Fuzhen, WANG Jindong, et al. Deep subdomain adaptation network for image classification[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(4): 1713–1722. doi: 10.1109/TNNLS.2020.2988928.
|
[26] |
ZHANG Jing, LI Wanqing, and OGUNBONA P. Joint geometrical and statistical alignment for visual domain adaptation[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, USA, 2017: 5150–5158. doi: 10.1109/CVPR.2017.547.
|
[27] |
WANG Jindong, CHEN Yiqiang, FENG Wenjie, et al. Transfer learning with dynamic distribution adaptation[J]. ACM Transactions on Intelligent Systems and Technology (TIST), 2020, 11(1): 6. doi: 10.1145/3360309.
|
[28] |
XIANG Xiaowei, LIU Yang, FANG Gaoyun, et al. Two-stage alignments framework for unsupervised domain adaptation on time series data[J]. IEEE Signal Processing Letters, 2023, 30: 698–702. doi: 10.1109/LSP.2023.3264621.
|
[29] |
CHEN Chao, FU Zhihang, CHEN Zhihong, et al. HoMM: Higher-order moment matching for unsupervised domain adaptation[C]. Proceedings of the 34th AAAI Conference on Artificial Intelligence, New York, USA, 2020: 3422–3429. doi: 10.1609/aaai.v34i04.5745.
|
[30] |
KANG Yongzhe, YANG Xichen, ZHOU Zhongkai, et al. A comparative study of fault diagnostic methods for lithium-ion batteries based on a standardized fault feature comparison method[J]. Journal of Cleaner Production, 2021, 278: 123424. doi: 10.1016/j.jclepro.2020.123424.
|
[31] |
SUN Jinlei, CHEN Siwen, XING Shiyou, et al. A battery internal short circuit fault diagnosis method based on incremental capacity curves[J]. Journal of Power Sources, 2024, 602: 234381. doi: 10.1016/j.jpowsour.2024.234381.
|
[32] |
KANG Yongzhe, DUAN Bin, ZHOU Zhongkai, et al. A multi-fault diagnostic method based on an interleaved voltage measurement topology for series connected battery packs[J]. Journal of Power Sources, 2019, 417: 132–144. doi: 10.1016/j.jpowsour.2019.01.058.
|
[33] |
LAI Xin, YI Wei, KONG Xiangdong, et al. Online detection of early stage internal short circuits in series-connected lithium-ion battery packs based on state-of-charge correlation[J]. Journal of Energy Storage, 2020, 30: 101514. doi: 10.1016/j.est.2020.101514.
|
[34] |
GANIN Y and LEMPITSKY V. Unsupervised domain adaptation by backpropagation[C]. Proceedings of the 32nd International Conference on International Conference on Machine Learning, Lille, France, 2015: 1180–1189.
|
[35] |
LONG Mingsheng, CAO Zhangjie, WANG Jianmin, et al. Conditional adversarial domain adaptation[C]. Proceedings of the 32nd International Conference on Neural Information Processing Systems, Montréal, Canada, 2018: 1647–1657.
|