Citation: | RUI Xiaobin, LIN Weihan, JI Jiaxin, WANG Zhixiao. Research on Station Centrality and Cascade Failure Invulnerability of Urban Rail Transit Networks[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250182 |
[1] |
鞠艳妮, 李宗平, 陈宇帆, 等. 区域轨道交通系统节点重要度及故障恢复研究[J]. 中国安全科学学报, 2021, 31(2): 112–119. doi: 10.16265/j.cnki.issn1003-3033.2021.02.016.
JU Yanni, LI Zongping, CHEN Yufan, et al. Study on node importance and failure recovery of regional rail transit system[J]. China Safety Science Journal, 2021, 31(2): 112–119. doi: 10.16265/j.cnki.issn1003-3033.2021.02.016.
|
[2] |
谌微微, 张富贵, 赵晓波. 轨道交通线网拓扑结构模型及节点重要度分析[J]. 重庆交通大学学报: 自然科学版, 2019, 38(7): 107–113. doi: 10.3969/j.issn.1674-0696.2019.07.18.
CHEN Weiwei, ZHANG Fugui, and ZHAO Xiaobo. Topological structure model and node importance analysis of rail transit network[J]. Journal of Chongqing Jiaotong University: Natural Science, 2019, 38(7): 107–113. doi: 10.3969/j.issn.1674-0696.2019.07.18.
|
[3] |
SHEN Yi, YANG Huang, REN Gang, et al. Model cascading overload failure and dynamic vulnerability analysis of facility network of metro station[J]. Reliability Engineering & System Safety, 2024, 242: 109711. doi: 10.1016/j.ress.2023.109711.
|
[4] |
LIU Guangyi, AMINI A, PANDEY V, et al. Data-driven distributionally robust mitigation of risk of cascading failures[C]. 2024 American Control Conference (ACC), Toronto, Canada, 2024: 3264–3269. doi: 10.23919/ACC60939.2024.10644661.
|
[5] |
GENG Jiawei, ZHANG Chuntian, YANG Lixing, et al. Integrated scheduling of metro trains and shuttle buses with passenger flow control strategy on an oversaturated metro line[J]. Computers & Industrial Engineering, 2024, 189: 109980. doi: 10.1016/j.cie.2024.109980.
|
[6] |
张震, 刘迪洋, 张进, 等. 基于节点冗余容量动态控制的复杂网络鲁棒性研究[J]. 电子与信息学报, 2021, 43(5): 1349–1356. doi: 10.11999/JEIT200185.
ZHANG Zhen, LIU Diyang, ZHANG Jin, et al. Research on the robustness of complex networks based on dynamic control of node redundancy capacity[J]. Journal of Electronics & Information Technology, 2021, 43(5): 1349–1356. doi: 10.11999/JEIT200185.
|
[7] |
刘凤增, 肖兵, 陈施思, 等. 负载作用下相依网络择优恢复方法研究[J]. 电子与信息学报, 2020, 42(7): 1694–1701. doi: 10.11999/JEIT190486.
LIU Fengzeng, XIAO Bing, CHEN Shisi, et al. A preferential recovery method of interdependent networks under load[J]. Journal of Electronics & Information Technology, 2020, 42(7): 1694–1701. doi: 10.11999/JEIT190486.
|
[8] |
冯佳, 许奇, 李夏苗, 等. 城市轨道交通系统网络复杂性研究[J]. 交通运输系统工程与信息, 2017, 17(6): 242–247. doi: 10.16097/j.cnki.1009-6744.2017.06.035.
FENG Jia, XU Qi, LI Xiamiao, et al. Complex network study on urban rail transit systems[J]. Journal of Transportation Systems Engineering and Information Technology, 2017, 17(6): 242–247. doi: 10.16097/j.cnki.1009-6744.2017.06.035.
|
[9] |
梁青槐, 柴树山, 钟思敏, 等. 城市轨道交通站点网络结构综合重要度识别[J]. 铁道工程学报, 2019, 36(9): 66–71. doi: 10.3969/j.issn.1006-2106.2019.09.012.
LIANG Qinghuai, CHAI Shushan, ZHONG Simin, et al. Identification of comprehensive importance of urban rail transit stations in network structure[J]. Journal of Railway Engineering Society, 2019, 36(9): 66–71. doi: 10.3969/j.issn.1006-2106.2019.09.012.
|
[10] |
李晓璐, 于昕明, 雷方舒, 等. 城市轨道交通系统灾害链网络模型构建与评价[J]. 中国安全科学学报, 2018, 28(6): 179–184. doi: 10.16265/j.cnki.issn1003-3033.2018.06.030.
LI Xiaolu, YU Xinming, LEI Fangshu, et al. Construction of disaster chain network model and evaluation of network index for urban rail transit system[J]. China Safety Science Journal, 2018, 28(6): 179–184. doi: 10.16265/j.cnki.issn1003-3033.2018.06.030.
|
[11] |
左忠义, 刘泽宇, 杨广川. 基于引力影响模型的轨道交通网络关键节点识别研究[J]. 交通运输系统工程与信息, 2025, 25(1): 102–112. doi: 10.16097/j.cnki.1009-6744.2025.01.011.
ZUO Zhongyi, LIU Zeyu, and YANG Guangchuan. Key node identification of rail transit network based on gravity influence model[J]. Journal of Transportation Systems Engineering and Information Technology, 2025, 25(1): 102–112. doi: 10.16097/j.cnki.1009-6744.2025.01.011.
|
[12] |
LI Jing, LU Qingchang, XU Pengcheng, et al. Cascading failures on multimodal public transportation networks: The role of station coupling strength[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(11): 17187–17199. doi: 10.1109/TITS.2024.3450019.
|
[13] |
朱广宇, 孙歆霓, 杨荣正, 等. 变时间尺度城轨客流的本征模量分解及组合深度学习预测[J]. 电子与信息学报, 2023, 45(12): 4421–4430. doi: 10.11999/JEIT221300.
ZHU Guangyu, SUN Xinni, YANG Rongzheng, et al. Intrinsic mode decomposition and combined deep learning prediction of urban rail transit passenger flow at variable time scales[J]. Journal of Electronics & Information Technology, 2023, 45(12): 4421–4430. doi: 10.11999/JEIT221300.
|
[14] |
胡映月, 陈峰, 陈培文, 等. 基于网络客流传播的轨道交通关键站点识别[J]. 西南交通大学学报, 2017, 52(6): 1193–1200, 1215. doi: 10.3969/j.issn.0258-2724.2017.06.021.
HU Yingyue, CHEN Feng, CHEN Peiwen, et al. Critical station identification based on passenger propagation in urban mass transit network[J]. Journal of Southwest Jiaotong University, 2017, 52(6): 1193–1200, 1215. doi: 10.3969/j.issn.0258-2724.2017.06.021.
|
[15] |
LI Jing, LU Qingchang, XU Pengcheng, et al. Critical station identification for cascading failure mitigation considering the Lyapunov-stability of metro stations[J]. Reliability Engineering & System Safety, 2025, 256: 110772. doi: 10.1016/j.ress.2024.110772.
|
[16] |
刘诗序, 关宏志, 严海. 网络交通流动态演化的混沌现象及其控制[J]. 物理学报, 2012, 61(9): 090506. doi: 10.7498/aps.61.090506.
LIU Shixu, GUAN Hongzhi, and YAN Hai. Chaotic behavior in the dynamical evolution of network traffic flow and its control[J]. Acta Physica Sinica, 2012, 61(9): 090506. doi: 10.7498/aps.61.090506.
|
[17] |
李宗平, 陈宇帆, 鞠艳妮, 等. 多制式区域轨道交通网络关键节点识别[J]. 安全与环境学报, 2022, 22(6): 3217–3226. doi: 10.13637/j.issn.1009-6094.2021.1013.
LI Zongping, CHEN Yufan, JU Yanni, et al. Identification of key nodes in multi-mode regional rail transit networks[J]. Journal of Safety and Environment, 2022, 22(6): 3217–3226. doi: 10.13637/j.issn.1009-6094.2021.1013.
|
[18] |
高超, 蒋世洪, 王震, 等. 基于动态客流的城市轨道交通关键站点识别[J]. 中国科学: 信息科学, 2021, 51(9): 1490–1506. doi: 10.1360/SSI-2020-0303.
GAO Chao, JIANG Shihong, WANG Zhen, et al. A novel method to identify influential stations based on dynamic passenger flows[J]. Scientia Sinica Informationis, 2021, 51(9): 1490–1506. doi: 10.1360/SSI-2020-0303.
|
[19] |
刘星雨, 刘杰, 王喆, 等. 基于K-shell的城际轨道网络关键节点识别研究[J]. 北京交通大学学报, 2024, 48(4): 181–190. doi: 10.11860/j.issn.1673-0291.20230077.
LIU Xingyu, LIU Jie, WANG Zhe, et al. Research on identification of key nodes in intercity rail networks based on K-shell[J]. Journal of Beijing Jiaotong University, 2024, 48(4): 181–190. doi: 10.11860/j.issn.1673-0291.20230077.
|
[20] |
翟志鹏, 曹阳, 沈琴琴, 等. 基于多时空图融合与动态注意力的交通流预测[J/OL]. 计算机工程, 1–9. https://doi.org/10.19678/j.issn.1000-3428.0069439.
ZHAI Zhipeng, CAO Yang, SHEN Qinqin, et al. Traffic flow prediction model based on multiple spatio-temporal graph fusion and dynamic attention[J/OL]. Computer Engineering, 1–9. https://doi.org/10.19678/j.issn.1000-3428.0069439.
|
[21] |
WANG Zhixiao, DU Changjiang, FAN Jianping, et al. Ranking influential nodes in social networks based on node position and neighborhood[J]. Neurocomputing, 2017, 260: 466–477. doi: 10.1016/j.neucom.2017.04.064.
|
[22] |
SUN Li, ZHAO Juanjuan, ZHANG Fan, et al. FMSYS: Fine-grained passenger flow monitoring in a large-scale metro system based on AFC smart card data[C]. 28th Pacific-Asia Conference on Knowledge Discovery and Data Mining, Taipei, China, 2024: 336–349. doi: 10.1007/978-981-97-2262-4_27.
|
[23] |
杨安安, 陈艳艳, 黄建玲, 等. 基于短时客流预测的地铁动态限流预警模型研究[J]. 城市轨道交通研究, 2018, 21(10): 29–33. doi: 10.16037/j.1007-869x.2018.10.007.
YANG Anan, CHEN Yanyan, HUANG Jianling, et al. Early warning model of metro dynamic flow limitation based on short-term passenger flow forecasting[J]. Urban Mass Transit, 2018, 21(10): 29–33. doi: 10.16037/j.1007-869x.2018.10.007.
|
[24] |
杨景峰, 朱大鹏, 赵瑞琳. 城市轨道交通网络特性与级联失效鲁棒性分析[J]. 计算机工程与应用, 2022, 58(7): 250–258. doi: 10.3778/j.issn.1002-8331.2105-0157.
YANG Jingfeng, ZHU Dapeng, and ZHAO Ruilin. Analysis on characteristics of urban rail transit network and robustness of cascading failure[J]. Computer Engineering and Applications, 2022, 58(7): 250–258. doi: 10.3778/j.issn.1002-8331.2105-0157.
|
[25] |
LATORA V and MARCHIORI M. Efficient behavior of small-world networks[J]. Physical Review Letters, 2001, 87(19): 198701. doi: 10.1103/PhysRevLett.87.198701.
|
[26] |
YANG Xiaofan, MEGSON G M, TANG Yuanyan, et al. Largest connected component of a star graph with faulty vertices[J]. International Journal of Computer Mathematics, 2008, 85(12): 1771–1778. doi: 10.1080/00207160701619200.
|
[27] |
陈培文, 陈峰, 胡映月, 等. 基于复杂网络的城市轨道交通网络中心性研究[J]. 复杂系统与复杂性科学, 2017, 14(2): 97–102,109. doi: 10.13306/j.1672-3813.2017.02.014.
CHEN Peiwen, CHEN Feng, HU Yingyue, et al. On urban rail transit network centrality using complex network theory[J]. Complex Systems and Complexity Science, 2017, 14(2): 97–102,109. doi: 10.13306/j.1672-3813.2017.02.014.
|