Citation: | LI Yun, YANG Songlin, XING Zhitong, WU Guangfu, MA Hao. Study on Satellite Signal Recognition with Multi-scale Feature Attention Network[J]. Journal of Electronics & Information Technology, 2025, 47(6): 1792-1802. doi: 10.11999/JEIT250126 |
[1] |
SMITH A, EVANS M, and DOWNEY J. Modulation classification of satellite communication signals using cumulants and neural networks[C]. 2017 Cognitive Communications for Aerospace Applications Workshop (CCAA), Cleveland, USA, 2017: 1–8. doi: 10.1109/CCAAW.2017.8001878.
|
[2] |
冯晓东, 曾军. 基于决策论的数字调制信号识别方法[J]. 电子科技, 2015, 28(4): 124–127. doi: 10.16180/j.cnki.issn1007-7820.2015.04.033.
FENG Xiaodong and ZENG Jun. A method for digital modulation recognition based on decision theory[J]. Electronic Science and Technology, 2015, 28(4): 124–127. doi: 10.16180/j.cnki.issn1007-7820.2015.04.033.
|
[3] |
HAZZA A, SHOAIB M, ALSHEBEILI S A, et al. An overview of feature-based methods for digital modulation classification[C]. 2013 1st International Conference on Communications, Signal Processing, and Their Applications (ICCSPA), Sharjah, United Arab Emirates, 2013: 1–6. doi: 10.1109/ICCSPA.2013.6487244.
|
[4] |
闫文康, 闫毅, 范亚楠, 等. 基于小波变换熵值及高阶累积量联合的卫星信号调制识别算法[J]. 空间科学学报, 2021, 41(6): 968–975. doi: 10.11728/cjss2021.06.968.
YAN Wenkang, YAN Yi, FAN Yanan, et al. A modulation recognition algorithm based on wavelet transform entropy and high-order cumulant for satellite signal modulation[J]. Chinese Journal of Space Science, 2021, 41(6): 968–975. doi: 10.11728/cjss2021.06.968.
|
[5] |
杨洪娟, 时统志, 李博, 等. 基于联合特征参数的卫星单-混信号调制识别研究[J]. 电子与信息学报, 2022, 44(10): 3499–3506. doi: 10.11999/JEIT210768.
YANG Hongjuan, SHI Tongzhi, LI Bo, et al. Research on satellite single-mixed signal modulation recognition based on joint feature parameters[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3499–3506. doi: 10.11999/JEIT210768.
|
[6] |
ZHANG Xueqin, LUO Zhongqiang, XIAO Wenshi, et al. Deep learning-based modulation recognition for MIMO systems: Fundamental, methods, challenges[J]. IEEE Access, 2024, 12: 112558–112575. doi: 10.1109/ACCESS.2024.3440350.
|
[7] |
袁德品, 赵亮, 葛宪生. 基于复数深度神经网络的电磁信号调制识别[J]. 电子科技, 2025, 38(3): 1–6. doi: 10.16180/j.cnki.issn1007-7820.2025.03.001.
YUAN Depin, ZHAO Liang, and GE Xiansheng. Electromagnetic signal modulation recognition based on complex-valued deep neural network[J]. Electronic Science and Technology, 2025, 38(3): 1–6. doi: 10.16180/j.cnki.issn1007-7820.2025.03.001.
|
[8] |
ELSAGHEER M M and RAMZY S M. A hybrid model for automatic modulation classification based on residual neural networks and long short term memory[J]. Alexandria Engineering Journal, 2023, 67: 117–128. doi: 10.1016/j.aej.2022.08.019.
|
[9] |
O’SHEA T J, ROY T, and CLANCY T C. Over-the-air deep learning based radio signal classification[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12(1): 168–179. doi: 10.1109/JSTSP.2018.2797022.
|
[10] |
LOTFY M, ESSAI M, and ATALLAH H. Automatic modulation classification: Convolutional deep learning neural networks approaches[J]. SVU-International Journal of Engineering Sciences and Applications, 2023, 4(1): 48–54. doi: 10.21608/svusrc.2022.162662.1076.
|
[11] |
XU Jialang, LUO Chunbo, PARR G, et al. A spatiotemporal multi-channel learning framework for automatic modulation recognition[J]. IEEE Wireless Communications Letters, 2020, 9(10): 1629–1632. doi: 10.1109/LWC.2020.2999453.
|
[12] |
HUYNH-THE T, HUA C H, PHAM Q V, et al. MCNet: An efficient CNN architecture for robust automatic modulation classification[J]. IEEE Communications Letters, 2020, 24(4): 811–815. doi: 10.1109/LCOMM.2020.2968030.
|
[13] |
张承畅, 李晓梦, 李吉利, 等. 基于 JDA-BP 网络的 MQAM 信号调制识别[J]. 实验技术与管理, 2024, 41(5): 31–37. doi: 10.16791/j.cnki.sjg.2024.05.005.
ZHANG Chengchang, LI Xiaomeng, LI Jili, et al. Recognition method for multiple quadrature amplitude modulation signals based on the JDA-BP network[J]. Experimental Technology and Management, 2024, 41(5): 31–37. doi: 10.16791/j.cnki.sjg.2024.05.005.
|
[14] |
PACAL I, CELIK O, BAYRAM B, et al. Enhancing EfficientNetv2 with global and efficient channel attention mechanisms for accurate MRI-Based brain tumor classification[J]. Cluster Computing, 2024, 27(8): 11187–11212. doi: 10.1007/s10586-024-04532-1.
|
[15] |
ZHAO Minghang, ZHONG Shisheng, FU Xuyun, et al. Deep residual shrinkage networks for fault diagnosis[J]. IEEE Transactions on Industrial Informatics, 2020, 16(7): 4681–4690. doi: 10.1109/TII.2019.2943898.
|
[16] |
YU F and KOLTUN V. Multi-scale context aggregation by dilated convolutions[C]. The 4th International Conference on Learning Representations, San Juan, Puerto Rico, 2015.
|
[17] |
HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904–1916. doi: 10.1109/TPAMI.2015.2389824.
|
[18] |
NJOKU J N, MOROCHO-CAYAMCELA M E, and LIM W. CGDNet: Efficient hybrid deep learning model for robust automatic modulation recognition[J]. IEEE Networking Letters, 2021, 3(2): 47–51. doi: 10.1109/LNET.2021.3057637.
|
[19] |
HERMAWAN A P, GINANJAR R R, KIM D S, et al. CNN-based automatic modulation classification for beyond 5G communications[J]. IEEE Communications Letters, 2020, 24(5): 1038–1041. doi: 10.1109/LCOMM.2020.2970922.
|
[20] |
ZHANG Fuxin, LUO Chunbo, XU Jialang, et al. An efficient deep learning model for automatic modulation recognition based on parameter estimation and transformation[J]. IEEE Communications Letters, 2021, 25(10): 3287–3290. doi: 10.1109/LCOMM.2021.3102656.
|
[21] |
LIU Xiaoyu, YANG Diyu, and EL GAMAL A. Deep neural network architectures for modulation classification[C]. 2017 51st Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, USA, 2017: 915–919. doi: 10.1109/ACSSC.2017.8335483.
|