Citation: | SUN Chenying, YAO Weilai, LIANG Xindong, JIA Jianjun. Modeling and Simulation Analysis of Inter-satellites Pseudo-code Ranging for Space Gravitational Wave Detection[J]. Journal of Electronics & Information Technology, 2025, 47(6): 1826-1836. doi: 10.11999/JEIT250121 |
[1] |
BENDER P L, BRILLET A, CIUFOLINI I, et al. LISA. Laser interferometer space antenna for the detection and observation of gravitational waves. An international project in the field of fundamental physics in space[R]. MPQ 233, 1998: 1–206.
|
[2] |
LUO Jun, CHEN Lisheng, DUAN Huizong, et al. TianQin: A space-borne gravitational wave detector[J]. Classical and Quantum Gravity, 2016, 33(3): 035010. doi: 10.1088/0264-9381/33/3/035010.
|
[3] |
LUO Ziren, WANG Yan, WU Yueliang, et al. The Taiji program: A concise overview[J]. Progress of Theoretical and Experimental Physics, 2021, 2021(5): 05A108. doi: 10.1093/ptep/ptaa083.
|
[4] |
ESTEBAN DELGADO J J. Laser ranging and data communication for the laser interferometer space antenna[D]. [Ph. D. dissertation], Universidad de Granada, 2012.
|
[5] |
ESTEBAN J J, GARCÍA A F, EICHHOLZ J, et al. Ranging and phase measurement for LISA[J]. Journal of Physics: Conference Series, 2010, 228: 012045. doi: 10.1088/1742-6596/228/1/012045.
|
[6] |
REINHARDT J N, STAAB M, YAMAMOTO K, et al. Ranging sensor fusion in LISA data processing: Treatment of ambiguities, noise, and onboard delays in LISA ranging observables[J]. Physical Review D, 2024, 109(2): 022004. doi: 10.1103/PhysRevD.109.022004.
|
[7] |
SUTTON A, MCKENZIE K, WARE B, et al. Laser ranging and communications for LISA[J]. Optics Express, 2010, 18(20): 20759–20773. doi: 10.1364/OE.18.020759.
|
[8] |
邓汝杰, 张艺斌, 刘河山, 等. 太极计划中的星间激光测距地面电子学验证[J]. 中国光学(中英文), 2023, 16(4): 765–776. doi: 10.37188/CO.2022-0041.
DENG Rujie, ZHANG Yibin, LIU Heshan, et al. Ground electronics verification of inter-satellites laser ranging in the Taiji program[J]. Chinese Optics, 2023, 16(4): 765–776. doi: 10.37188/CO.2022-0041.
|
[9] |
XIE Siyuan, ZENG Hanyu, PAN Yuhang, et al. Bi-directional PRN laser ranging and clock synchronization for TianQin mission[J]. Optics Communications, 2023, 541: 129558. doi: 10.1016/j.optcom.2023.129558.
|
[10] |
EURINGER P, HECHENBLAIKNER G, SOUALL F, et al. Performance analysis of sequential carrier- and code-tracking receivers in the context of high-precision spaceborne metrology systems[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 1000510. doi: 10.1109/TIM.2023.3332388.
|
[11] |
刘河山, 高瑞弘, 罗子人, 等. 空间引力波探测中的绝对距离测量及通信技术[J]. 中国光学, 2019, 12(3): 486–492. doi: 10.3788/co.20191203.0486.
LIU Heshan, GAO Ruihong, LUO Ziren, et al. Laser ranging and data communication for space gravitational wave detection[J]. Chinese Optics, 2019, 12(3): 486–492. doi: 10.3788/co.20191203.0486.
|
[12] |
ZENG Hanyu, YAN Hao, XIE Siyuan, et al. Experimental demonstration of weak-light inter-spacecraft clock jitter readout for TianQin[J]. Optics Express, 2023, 31(21): 34648–34666. doi: 10.1364/OE.503164.
|
[13] |
ESTEBAN J J, GARCÍA A F, BARKE S, et al. Experimental demonstration of weak-light laser ranging and data communication for LISA[J]. Optics Express, 2011, 19(17): 15937–15946. doi: 10.1364/OE.19.015937.
|
[14] |
SWEENEY D M. Laser communications for LISA and the University of Florida LISA interferometry simulator[D]. [Ph. D. dissertation], University of Florida, 2012.
|
[15] |
GERBERDING O, SHEARD B, BYKOV I, et al. Phasemeter core for intersatellite laser heterodyne interferometry: Modelling, simulations and experiments[J]. Classical and Quantum Gravity, 2013, 30(23): 235029. doi: 10.1088/0264-9381/30/23/235029.
|
[16] |
胡寿松. 自动控制原理[M]. 6版. 北京: 科学出版社, 2013: 209–213.
HU Shousong. Principles of Automatic Control[M]. 6th ed. Beijing: Science Press, 2013: 209–213.
|
[17] |
GARDNER F M. Phaselock Techniques[M]. 3rd ed. Hoboken: Wiley-Interscience, 2005.
|
[18] |
鲍爱达, 侯世豪, 郭鑫, 等. 星间链路通信收发一体化系统设计[J]. 计算机测量与控制, 2024, 32(8): 280–286. doi: 10.16526/j.cnki.11-4762/tp.2024.08.040.
BAO Aida, HOU Shihao, GUO Xin, et al. Design of transceiver integrated system for inter-satellite link communication[J]. Computer Measurement & Control, 2024, 32(8): 280–286. doi: 10.16526/j.cnki.11-4762/tp.2024.08.040.
|
[19] |
BARKE S. Inter-spacecraft frequency distribution for future gravitational wave observatories[D]. [Ph. D. dissertation], Gottfried Wilhelm Leibniz Universität Hannover, 2015. doi: 10.15488/8405.
|
[20] |
HEINZEL G, ESTEBAN J J, BARKE S, et al. Auxiliary functions of the LISA laser link: Ranging, clock noise transfer and data communication[J]. Classical and Quantum Gravity, 2011, 28(9): 094008. doi: 10.1088/0264-9381/28/9/094008.
|
[21] |
BRAUSE N C. Auxiliary function development for the LISA metrology system[D]. [Ph. D. dissertation], Institutionelles Repositorium der Leibniz Universität Hannover, 2018. doi: 10.15488/3511.
|
[22] |
YAMAMOTO K, BYKOV I, REINHARDT J N, et al. Experimental end-to-end demonstration of intersatellite absolute ranging for the Laser Interferometer Space Antenna[J]. American Physical Society, 2024, 22(5): 054020. doi: 10.1103/PhysRevApplied.22.054020.
|