Citation: | TAN Lize, DING Peng, WANG Fan, LI Na, GONG Anmin, NAN Wenya, LI Tianwen, ZHAO Lei, FU Yunfa. Research on an EEG-based Neurofeedback System for the Auxiliary Intervention of Post-Traumatic Stress Disorder[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250093 |
[1] |
SELYE H. A syndrome produced by diverse nocuous agents[J]. Nature, 1936, 138(3479): 32–32. doi: 10.1038/138032a0.
|
[2] |
BOYCE W T and ELLIS B J. Biological sensitivity to context: I. An evolutionary–developmental theory of the origins and functions of stress reactivity[J]. Development and Psychopathology, 2005, 17(2): 271–301. doi: 10.1017/s0954579405050145.
|
[3] |
DAVIU N, BRUCHAS M R, MOGHADDAM B, et al. Neurobiological links between stress and anxiety[J]. Neurobiology of Stress, 2019, 11: 100191. doi: 10.1016/j.ynstr.2019.100191.
|
[4] |
CHU B, MARWAHA K, SANVICTORES T, et al. Physiology, stress reaction[M]. StatPearls [Internet]. Treasure Island: StatPearls Publishing, 2024.
|
[5] |
KAR N. Cognitive behavioral therapy for the treatment of post-traumatic stress disorder: A review[J]. Neuropsychiatric Disease and Treatment, 2011, 7(1): 167–181. doi: 10.2147/NDT.S10389.
|
[6] |
STEINERT C, MUNDER T, RABUNG S, et al. Psychodynamic therapy: As efficacious as other empirically supported treatments? A meta-analysis testing equivalence of outcomes[J]. American Journal of Psychiatry, 2017, 174(10): 943–953. doi: 10.1176/appi.ajp.2017.17010057.
|
[7] |
MONSOUR M, EBEDES D, and BORLONGAN C V. A review of the pathology and treatment of TBI and PTSD[J]. Experimental Neurology, 2022, 351: 114009. doi: 10.1016/j.expneurol.2022.114009.
|
[8] |
RUGLASS L M, SMITH K Z, KILLEEN T K, et al. Pharmacological treatment of trauma and stressor-related disorders[M]. EVANS S M and CARPENTER K M. APA Handbook of Psychopharmacology. Washington: American Psychological Association, 2019: 281–307. doi: 10.1037/0000133-013.
|
[9] |
AVERILL L A and ABDALLAH C G. Investigational drugs for assisting psychotherapy for posttraumatic stress disorder (PTSD): Emerging approaches and shifting paradigms in the era of psychedelic medicine[J]. Expert Opinion on Investigational Drugs, 2022, 31(2): 133–137. doi: 10.1080/13543784.2022.2035358.
|
[10] |
GASPARYAN A, NAVARRO D, NAVARRETE F, et al. Pharmacological strategies for post-traumatic stress disorder (PTSD): From animal to clinical studies[J]. Neuropharmacology, 2022, 218: 109211. doi: 10.1016/j.neuropharm.2022.109211.
|
[11] |
GOUVEIA F V, DAVIDSON B, MENG Ying, et al. Treating post-traumatic stress disorder with neuromodulation therapies: Transcranial magnetic stimulation, transcranial direct current stimulation, and deep brain stimulation[J]. Neurotherapeutics, 2020, 17(4): 1747–1756. doi: 10.1007/s13311-020-00871-0.
|
[12] |
MATSUMOTO H and UGAWA Y. Adverse events of tDCS and tACS: A review[J]. Clinical Neurophysiology Practice, 2017, 2: 19–25. doi: 10.1016/j.cnp.2016.12.003.
|
[13] |
SARICA C, NANKOO J F, FOMENKO A, et al. Human Studies of Transcranial Ultrasound neuromodulation: A systematic review of effectiveness and safety[J]. Brain Stimulation, 2022, 15(3): 737–746. doi: 10.1016/j.brs.2022.05.002.
|
[14] |
SABÉ M, HYDE J, CRAMER C, et al. Transcranial magnetic stimulation and transcranial direct current stimulation across mental disorders: A systematic review and dose-response meta-analysis[J]. JAMA Network Open, 2024, 7(5): e2412616. doi: 10.1001/jamanetworkopen.2024.12616.
|
[15] |
PAN He, DING Peng, WANG Fan, et al. Comprehensive evaluation methods for translating BCI into practical applications: Usability, user satisfaction and usage of online BCI systems[J]. Frontiers in Human Neuroscience, 2024, 18: 1429130. doi: 10.3389/fnhum.2024.1429130.
|
[16] |
陈龙, 张定泽, 王坤, 等. 运动意图的头皮脑电编解码及其脑-机接口研究进展[J]. 电子与信息学报, 2023, 45(10): 3458–3467. doi: 10.11999/JEIT221449.
CHEN Long, ZHANG Dingze, WANG Kun, et al. Research progress on the coding and decoding of scalp electroencephalogram induced by movement intention and brain-computer interface[J]. Journal of Electronics & Information Technology, 2023, 45(10): 3458–3467. doi: 10.11999/JEIT221449.
|
[17] |
ZHANG Yuan, DAI Zhongxiang, HU Jianping, et al. Stress-induced changes in modular organizations of human brain functional networks[J]. Neurobiology of Stress, 2020, 13: 100231. doi: 10.1016/j.ynstr.2020.100231.
|
[18] |
FENSTER R J, LEBOIS L A M, RESSLER K J, et al. Brain circuit dysfunction in post-traumatic stress disorder: From mouse to man[J]. Nature Reviews Neuroscience, 2018, 19(9): 535–551. doi: 10.1038/s41583-018-0039-7.
|
[19] |
MAHMOOD D, NISAR H, and TSAI C Y. Exploring the efficacy of neurofeedback training in modulating alpha-frequency band and its effects on functional connectivity and band power[J]. Expert Systems with Applications, 2024, 254: 124415. doi: 10.1016/j.eswa.2024.124415.
|
[20] |
SHAW S B, NICHOLSON A A, ROS T, et al. Increased top-down control of emotions during symptom provocation working memory tasks following a RCT of alpha-down neurofeedback in PTSD[J]. NeuroImage: Clinical, 2023, 37: 103313. doi: 10.1016/j.nicl.2023.103313.
|
[21] |
ROS T, FREWEN P, THÉBERGE J, et al. Neurofeedback tunes scale-free dynamics in spontaneous brain activity[J]. Cerebral Cortex, 2017, 27(10): 4911–4922. doi: 10.1093/cercor/bhw285.
|
[22] |
KLUETSCH R C, ROS T, THÉBERGE J, et al. Plastic modulation of PTSD resting‐state networks and subjective wellbeing by EEG neurofeedback[J]. Acta Psychiatrica Scandinavica, 2014, 130(2): 123–136. doi: 10.1111/acps.12229.
|
[23] |
DU BOIS N, BIGIRIMANA A D, KORIK A, et al. Neurofeedback with low-cost, wearable electroencephalography (EEG) reduces symptoms in chronic Post-Traumatic Stress Disorder[J]. Journal of Affective Disorders, 2021, 295: 1319–1334. doi: 10.1016/j.jad.2021.08.071.
|
[24] |
MARCU G M, DUMBRAVĂ A, BĂCILĂ I C, et al. Increasing value and reducing waste of research on neurofeedback effects in post-traumatic stress disorder: A state-of-the-art-review[J]. Applied Psychophysiology and Biofeedback, 2024, 49(1): 23–45. doi: 10.1007/s10484-023-09610-5.
|
[25] |
NICHOLSON A A, DENSMORE M, FREWEN P A, et al. Homeostatic normalization of alpha brain rhythms within the default-mode network and reduced symptoms in post-traumatic stress disorder following a randomized controlled trial of electroencephalogram neurofeedback[J]. Brain Communications, 2023, 5(2): fcad068. doi: 10.1093/braincomms/fcad068.
|
[26] |
ROS T, THÉBERGE J, FREWEN P A, et al. Mind over chatter: Plastic up-regulation of the fMRI salience network directly after EEG neurofeedback[J]. Neuroimage, 2013, 65: 324–335. doi: 10.1016/j.neuroimage.2012.09.046.
|
[27] |
CARDONA ALVAREZ Y N. EEG-based BCI monitoring framework: Real-time acquisition and visualization from audiovisual stimulation paradigms[D]. [Master dissertation], Universidad Nacional de Colombia, 2022.
|
[28] |
GEMBORN NILSSON M, TUFVESSON P, HESKEBECK F, et al. An open-source human-in-the-loop BCI research framework: Method and design[J]. Frontiers in Human Neuroscience, 2023, 17: 1129362. doi: 10.3389/fnhum.2023.1129362.
|
[29] |
MEI Jie, LUO Ruixin, XU Lichao, et al. MetaBCI: An open-source platform for brain–computer interfaces[J]. Computers in Biology and Medicine, 2024, 168: 107806. doi: 10.1016/j.compbiomed.2023.107806.
|
[30] |
CARDONA-ÁLVAREZ Y N, ÁLVAREZ-MEZA A M, CÁRDENAS-PEÑA D A, et al. A novel OpenBCI framework for EEG-based neurophysiological experiments[J]. Sensors, 2023, 23(7): 3763. doi: 10.3390/s23073763.
|
[31] |
ERGENOGLU T, DEMIRALP T, BAYRAKTAROGLU Z, et al. Alpha rhythm of the EEG modulates visual detection performance in humans[J]. Cognitive Brain Research, 2004, 20(3): 376–383. doi: 10.1016/j.cogbrainres.2004.03.009.
|
[32] |
何峰, 董博文, 韩锦, 等. 基于头皮脑电的游戏型脑机接口应用研究综述[J]. 电子与信息学报, 2022, 44(2): 415–423. doi: 10.11999/JEIT211337.
HE Feng, DONG Bowen, HAN Jin, et al. Advances in application of game brain-computer interface based on ElectroEncephaloGram[J]. Journal of Electronics & Information Technology, 2022, 44(2): 415–423. doi: 10.11999/JEIT211337.
|