Citation: | LIANG Wei, LI Aoying, LUO Wei, LI Lixin, LIN Wensheng, LI Xu, WEI Baoguo. Resource Allocation in Reconfigurable Intelligent Surfaces Assisted NOMA Based Space-Air-Ground Integrated Network[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250078 |
[1] |
PAN Cunhua, REN Hong, WANG Kezhi, et al. Reconfigurable intelligent surfaces for 6G systems: Principles, applications, and research directions[J]. IEEE Communications Magazine, 2021, 59(6): 14–20. doi: 10.1109/MCOM.001.2001076.
|
[2] |
IMT-2023(6G)推进组. 智能超表面典型应用、挑战与关键技术[R]. IMT-2023(6G)推进组, 2023.
IMT-2023 (6G) Promotion Group. Typical applications, challenges, and key technologies of intelligent reflecting surfaces[R]. IMT-2023 (6G) Promotion Group, 2023.
|
[3] |
ZAINUD-DEEN S H. Reconfigurable intelligent surfaces for wireless communications[C]. 2022 39th National Radio Science Conference (NRSC), Cairo, Egypt, 2022: 342–342.
|
[4] |
YOU Li, XIONG Jiayuan, NG D W K, et al. Energy efficiency and spectral efficiency tradeoff in RIS-aided multiuser MIMO uplink transmission[J]. IEEE Transactions on Signal Processing, 2021, 69: 1407–1421. doi: 10.1109/TSP.2020.3047474.
|
[5] |
YANG Zhaohui, CHEN Mingzhe, SAAD W, et al. Energy-efficient wireless communications with distributed reconfigurable intelligent surfaces[J]. IEEE Transactions on Wireless Communications, 2022, 21(1): 665–679. doi: 10.1109/TWC.2021.3098632.
|
[6] |
XU Yongjun, XIE Hao, WU Qingqing, et al. Robust max-min energy efficiency for RIS-aided HetNets with distortion noises[J]. IEEE Transactions on Communications, 2022, 70(2): 1457–1471. doi: 10.1109/TCOMM.2022.3141798.
|
[7] |
NIU Hehao, LIN Zhi, AN Kang, et al. Active RIS assisted rate-splitting multiple access network: Spectral and energy efficiency tradeoff[J]. IEEE Journal on Selected Areas in Communications, 2023, 41(5): 1452–1467. doi: 10.1109/JSAC.2023.3240718.
|
[8] |
BUDHIRAJA I, VISHNOI V, KUMAR N, et al. Energy-efficient optimization scheme for RIS-assisted communication underlaying UAV with NOMA[C]. 2022 IEEE International Conference on Communications, Seoul, Korea, Republic of, 2022: 1–6. doi: 10.1109/ICC45855.2022.9838872.
|
[9] |
SUN Yifu, AN Kang, ZHU Yonggang, et al. Energy-efficient hybrid beamforming for multilayer RIS-assisted secure integrated terrestrial-aerial networks[J]. IEEE Transactions on Communications, 2022, 70(6): 4189–4210. doi: 10.1109/TCOMM.2022.3170632.
|
[10] |
ZHAI Zhiyuan, DAI Xinhong, DUO Bin, et al. Energy-efficient UAV-mounted RIS assisted mobile edge computing[J]. IEEE Wireless Communications Letters, 2022, 11(12): 2507–2511. doi: 10.1109/LWC.2022.3206587.
|
[11] |
DO T N, KADDOUM G, NGUYEN T L, et al. Aerial reconfigurable intelligent surface-aided wireless communication systems[C]. 2021 IEEE 32nd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Helsinki, Finland, 2021: 525–530. doi: 10.1109/PIMRC50174.2021.9569450.
|
[12] |
KURT G K, KHOSHKHOLGH M G, ALFATTANI S, et al. A vision and framework for the High Altitude Platform Station (HAPS) networks of the future[J]. IEEE Communications Surveys & Tutorials, 2021, 23(2): 729–779. doi: 10.1109/COMST.2021.3066905.
|
[13] |
JEON H B, PARK S H, PARK J, et al. An energy-efficient aerial backhaul system with reconfigurable intelligent surface[J]. IEEE Transactions on Wireless Communications, 2022, 21(8): 6478–6494. doi: 10.1109/TWC.2022.3149903.
|
[14] |
WANG Yong, LIN Zhi, NIU Hehao, et al. Secure satellite transmission with active reconfigurable intelligent surface[J]. IEEE Communications Letters, 2022, 26(12): 3029–3033. doi: 10.1109/LCOMM.2022.3207190.
|
[15] |
KHAN W U, LAGUNAS E, MAHMOOD A, et al. Energy-efficient RIS-enabled NOMA communication for 6G LEO satellite networks[C]. 2023 IEEE 97th Vehicular Technology Conference, Florence, Italy, 2023: 1–6. doi: 10.1109/VTC2023-Spring57618.2023.10200793.
|
[16] |
GUAN Da, SUN Xin, WANG Jun, et al. RIS-NOMA-aided LEO satellite communication networks[C]. 2022 10th International Conference on Information Systems and Computing Technology, Guilin, China, 2022: 409–413. doi: 10.1109/ISCTech58360.2022.00071.
|
[17] |
WU Min, GUO Kefeng, LIN Zhi, et al. Joint optimization design of RIS-assisted hybrid FSO SAGINs using deep reinforcement learning[J]. IEEE Transactions on Vehicular Technology, 2024, 73(3): 3025–3040. doi: 10.1109/TVT.2023.3324970.
|
[18] |
NGUYEN T V, LE H D, and PHAM A T. On the design of RIS–UAV relay-assisted hybrid FSO/RF satellite–aerial–ground integrated network[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(2): 757–771. doi: 10.1109/TAES.2022.3189334.
|
[19] |
DING Zhiguo and POOR H V. A simple design of IRS-NOMA transmission[J]. IEEE Communications Letters, 2020, 24(5): 1119–1123. doi: 10.1109/LCOMM.2020.2974196.
|
[20] |
NGUYEN K T, VU T H, and KIM S. Performance analysis and deep learning design of short-packet communication in multi-RIS-aided multiantenna wireless systems[J]. IEEE Internet of Things Journal, 2023, 10(19): 17265–17281. doi: 10.1109/JIOT.2023.3272674.
|
[21] |
AGHASHAHI S, ZEINALPOUR-YAZDI Z, TADAION A, et al. MU-massive MIMO with multiple RISs: SINR maximization and asymptotic analysis[J]. IEEE Wireless Communications Letters, 2023, 12(6): 997–1001. doi: 10.1109/LWC.2023.3256187.
|
[22] |
LIANG Wei, NG S X, DING Zhiguo, et al. User grouping, spectrum and power allocation for energy efficient MEC aided cognitive radio networks[J]. IEEE Transactions on Cognitive Communications and Networking, 2024, 10(6): 2383–2396. doi: 10.1109/TCCN.2024.3401752.
|
[23] |
GUO Kefeng, LIN Min, ZHANG Bangning, et al. On the performance of LMS communication with hardware impairments and interference[J]. IEEE Transactions on Communications, 2019, 67(2): 1490–1505. doi: 10.1109/TCOMM.2018.2878848.
|
[24] |
SHUAI Haifeng, GUO Kefeng, AN Kang, et al. Transmit antenna selection in NOMA-based integrated satellite-HAP-terrestrial networks with imperfect CSI and SIC[J]. IEEE Wireless Communications Letters, 2022, 11(8): 1565–1569. doi: 10.1109/LWC.2022.3165710.
|
[25] |
LI Bin, FEI Zesong, XU Xiaoming, et al. Resource allocations for secure cognitive satellite-terrestrial networks[J]. IEEE Wireless Communications Letters, 2018, 7(1): 78–81. doi: 10.1109/LWC.2017.2755014.
|
[26] |
DING Changfeng, WANG Junbo, ZHANG Hua, et al. Joint optimization of transmission and computation resources for satellite and high altitude platform assisted edge computing[J]. IEEE Transactions on Wireless Communications, 2022, 21(2): 1362–1377. doi: 10.1109/TWC.2021.3103764.
|
[27] |
MORELLI M, KUO C C J, and PUN M O. Synchronization techniques for orthogonal frequency division multiple access (OFDMA): A tutorial review[J]. Proceedings of the IEEE, 2007, 95(7): 1394–1427. doi: 10.1109/JPROC.2007.897979.
|
[28] |
ZENG Ming, LI Xingwang, LI Gen, et al. Sum rate maximization for IRS-assisted uplink NOMA[J]. IEEE Communications Letters, 2021, 25(1): 234–238. doi: 10.1109/LCOMM.2020.3025978.
|
[29] |
HUANG Qingquan, LIN Min, ZHU Weiping, et al. Uplink massive access in mixed RF/FSO satellite-aerial-terrestrial networks[J]. IEEE Transactions on Communications, 2021, 69(4): 2413–2426. doi: 10.1109/TCOMM.2021.3049364.
|
[30] |
YANG Gang, DAI Rao, and LIANG Yingchang. Energy-efficient UAV backscatter communication with joint trajectory design and resource optimization[J]. IEEE Transactions on Wireless Communications, 2021, 20(2): 926–941. doi: 10.1109/TWC.2020.3029225.
|
[31] |
ZENG Yong, XU Jie, and ZHANG Rui. Energy minimization for wireless communication with rotary-wing UAV[J]. IEEE Transactions on Wireless Communications, 2019, 18(4): 2329–2345. doi: 10.1109/TWC.2019.2902559.
|
[32] |
LIANG Wei, MA Shaobo, YANG Siyuan, et al. Hierarchical matching algorithm for relay selection in MEC-aided ultra-dense UAV networks[J]. Drones, 2023, 7(9): 579. doi: 10.3390/drones7090579.
|
[33] |
LIANG Wei, WEN Shuhui, LI Lixin, et al. Distributed user pairing and effective computation offloading in aerial edge networks[J]. Chinese Journal of Aeronautics, 2024, 37(4): 378–390. doi: 10.1016/j.cja.2023.10.028.
|
[34] |
徐子蒙, 王博文, 云霄, 等. 灾后无人机不确定偏好序下稳定中继选择方法[J]. 西安电子科技大学学报, 2022, 49(6): 32–41,50. doi: 10.19665/j.issn1001-2400.2022.06.005.
XU Zimeng, WANG Bowen, YUN Xiao, et al. Stable relay selection method under an uncertain preference ordinal for UAV in post-disaster[J]. Journal of Xidian University, 2022, 49(6): 32–41,50. doi: 10.19665/j.issn1001-2400.2022.06.005.
|
[35] |
ZHANG Han, ZHANG Dekun, MENG Weixiao, et al. User pairing algorithm with SIC in non-orthogonal multiple access system[C]. 2016 IEEE International Conference on Communications (ICC), Kuala Lumpur, Malaysia, 2016: 1–6. doi: 10.1109/ICC.2016.7511620.
|
[36] |
ALMRADI A, XIAO Pei, and HAMDI K A. Hop-by-Hop ZF beamforming for MIMO full-duplex relaying with co-channel interference[J]. IEEE Transactions on Communications, 2018, 66(12): 6135–6149. doi: 10.1109/TCOMM.2018.2863723.
|
[37] |
AL-OBIEDOLLAH H M, CUMANAN K, THIYAGALINGAM J, et al. Energy efficient beamforming design for MISO non-orthogonal multiple access systems[J]. IEEE Transactions on Communications, 2019, 67(6): 4117–4131. doi: 10.1109/TCOMM.2019.2900634.
|
[38] |
ZHOU Xiaobo, LI Jun, SHU Feng, et al. Secure SWIPT for directional modulation-aided AF relaying networks[J]. IEEE Journal on Selected Areas in Communications, 2019, 37(2): 253–268. doi: 10.1109/JSAC.2018.2872372.
|
[39] |
MU Xidong, LIU Yuanwei, GUO Li, et al. Exploiting intelligent reflecting surfaces in NOMA networks: Joint beamforming optimization[J]. IEEE Transactions on Wireless Communications, 2020, 19(10): 6884–6898. doi: 10.1109/TWC.2020.3006915.
|
[40] |
DUAN Ruiyang, WANG Jingjing, JIANG Chunxiao, et al. Resource allocation for multi-UAV aided IoT NOMA uplink transmission systems[J]. IEEE Internet of Things Journal, 2019, 6(4): 7025–7037. doi: 10.1109/JIOT.2019.2913473.
|
[41] |
CHU Jianhang, CHEN Xiaoming, ZHONG Caijun, et al. Robust design for NOMA-based multibeam LEO satellite internet of things[J]. IEEE Internet of Things Journal, 2021, 8(3): 1959–1970. doi: 10.1109/JIOT.2020.3015995.
|
[42] |
FANG Fang, WU Bibo, FU Shu, et al. Energy-efficient design of STAR-RIS aided MIMO-NOMA networks[J]. IEEE Transactions on Communications, 2023, 71(1): 498–511. doi: 10.1109/TCOMM.2022.3223706.
|