Citation: | ZHAO Zhixin, LIN Yingyun, ZHENG Yiqun, ZHOU Huilin. Channel Doppler Information-based Sparse Representation Model and Target Detection Method in Passive Radar[J]. Journal of Electronics & Information Technology, 2025, 47(6): 1816-1825. doi: 10.11999/JEIT250076 |
[1] |
COLONE F, FILIPPINI F, and PASTINA D. Passive radar: Past, present, and future challenges[J]. IEEE Aerospace and Electronic Systems Magazine, 2023, 38(1): 54–69. doi: 10.1109/MAES.2022.3221685.
|
[2] |
SUN Quande, SHAN Tao, FENG Yuan, et al. A frequency domain clutter suppression approach for passive radar[J]. IEEE Sensors Journal, 2024, 24(9): 14916–14929. doi: 10.1109/JSEN.2024.3382103.
|
[3] |
万显荣, 易建新, 占伟杰, 等. 基于多照射源的被动雷达研究进展与发展趋势[J]. 雷达学报, 2020, 9(6): 939–958. doi: 10.12000/JR20143.
WAN Xianrong, YI Jianxin, ZHAN Weijie, et al. Research progress and development trend of the multi-illuminator-based passive radar[J]. Journal of Radars, 2020, 9(6): 939–958. doi: 10.12000/JR20143.
|
[4] |
WANG Xiaojiang and ZHANG Zhenkai. Joint range and velocity estimation for orthogonal frequency division multiplexing-based high-speed integrated radar and communications system[J]. IET Communications, 2022, 16(9): 1005–1019. doi: 10.1049/cmu2.12403.
|
[5] |
HUANG Chuan, LI Zhongyu, AN Hongyang, et al. Maritime moving target detection using multiframe recursion association in GNSS-based passive radar[J]. IEEE Sensors Journal, 2024, 24(5): 6380–6391. doi: 10.1109/JSEN.2023.3343924.
|
[6] |
SAMCZYŃSKI P, ABRATKIEWICZ K, PŁOTKA M, et al. 5G network-based passive radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 5108209. doi: 10.1109/TGRS.2021.3137904.
|
[7] |
YI Jianxin, WAN Xianrong, and LEUNG H. ℓ0-regularized least squares versus matched filtering[J]. Signal Processing, 2022, 192: 108398. doi: 10.1016/j.sigpro.2021.108398.
|
[8] |
全英汇, 吴耀君, 段丽宁, 等. 基于稀疏恢复的雷达信号处理研究综述[J]. 雷达学报, 2024, 13(1): 46–67. doi: 10.12000/JR23211.
QUAN Yinghui, WU Yaojun, DUAN Lining, et al. A review of radar signal processing based on sparse recovery[J]. Journal of Radars, 2024, 13(1): 46–67. doi: 10.12000/JR23211.
|
[9] |
LAI Hongjun, YE Kun, SUN Haixin, et al. Atomic norm-based joint delay-doppler shift estimation for OFDM passive radar[J]. IEEE Signal Processing Letters, 2024, 31: 36–40. doi: 10.1109/LSP.2023.3341391.
|
[10] |
史海旭, 徐仲秋, 李光祚, 等. 利用稀疏CP-OFDM的SAR抗干扰成像方法研究[J]. 电子与信息学报, 2024, 46(12): 4441–4450. doi: 10.11999/JEIT240092.
SHI Haixu, XU Zhongqiu, LI Guangzuo, et al. Research on SAR anti-jamming imaging method with sparse CP-OFDM[J]. Journal of Electronics & Information Technology, 2024, 46(12): 4441–4450. doi: 10.11999/JEIT240092.
|
[11] |
WU Min and HAO Chengpeng. Super-resolution TOA and AOA estimation for OFDM radar systems based on compressed sensing[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(6): 5730–5740. doi: 10.1109/TAES.2022.3178393.
|
[12] |
NIKAEIN H, ZEFREH R G, and GAZOR S. Target detection and interference cancellation in passive radar sensors via group-sparse regression[J]. IEEE Sensors Journal, 2023, 23(18): 21484–21492. doi: 10.1109/JSEN.2023.3300887.
|
[13] |
NIKAEIN H, SHEIKHI A, and GAZOR S. Target detection in passive radar sensors using least angle regression[J]. IEEE Sensors Journal, 2021, 21(4): 4533–4542. doi: 10.1109/JSEN.2020.3035630.
|
[14] |
WEN Jinfang, YI Jianxin, and WAN Xianrong. Sparse representation for target parameter estimation in CDR-based passive radar[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(6): 1024–1028. doi: 10.1109/LGRS.2020.2991743.
|
[15] |
赵志欣, 朱斯航, 洪升, 等. 基于数字调幅广播外辐射源雷达的弱目标检测[J]. 兵工学报, 2017, 38(11): 2159–2165. doi: 10.3969/j.issn.1000-1093.2017.11.011.
ZHAO Zhixin, ZHU Sihang, HONG Sheng, et al. Weak target detection of DRM-based passive bistatic radar[J]. Acta Armamentarii, 2017, 38(11): 2159–2165. doi: 10.3969/j.issn.1000-1093.2017.11.011.
|
[16] |
李文静, 李卓林, 袁振涛. 基于稀疏重构的海杂波抑制和目标提取算法[J]. 系统工程与电子技术, 2022, 44(3): 777–785. doi: 10.12305/j.issn.1001-506X.2022.03.09.
LI Wenjing, LI Zhuolin, and YUAN Zhentao. Sea clutter suppression and target extraction algorithm based on sparse reconstruction[J]. Systems Engineering and Electronics, 2022, 44(3): 777–785. doi: 10.12305/j.issn.1001-506X.2022.03.09.
|
[17] |
白宗龙, 师黎明, 孙金玮. 基于自适应LASSO先验的稀疏贝叶斯学习算法[J]. 自动化学报, 2022, 48(5): 1193–1208. doi: 10.16383/j.aas.c210022.
BAI Zonglong, SHI Liming, and SUN Jinwei. Sparse Bayesian learning using adaptive LASSO priors[J]. Acta Automatica Sinica, 2022, 48(5): 1193–1208. doi: 10.16383/j.aas.c210022.
|
[18] |
SAHOO S K and MAKUR A. Signal recovery from random measurements via extended orthogonal matching pursuit[J]. IEEE Transactions on Signal Processing, 2015, 63(10): 2572–2581. doi: 10.1109/TSP.2015.2413384.
|
[19] |
LELLOUCH G, MISHRA A K, and INGGS M. Design of OFDM radar pulses using genetic algorithm based techniques[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(4): 1953–1966. doi: 10.1109/TAES.2016.140671.
|
[20] |
COLONE F, O'HAGAN D W, LOMBARDO P, et al. A multistage processing algorithm for disturbance removal and target detection in passive bistatic radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(2): 698–722. doi: 10.1109/TAES.2009.5089551.
|