Citation: | YAN Jiaqing, LIU Gengchen, ZHOU Qingqi, XUE Weiqi, ZHOU Weiao, TIAN Yunzhi, WANG Jiaju, DONG Zhekang, LI Xiaoli. Precise Hand Joint Motion Analysis Driven by Complex Physiological Information[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250033 |
[1] |
SITOLE S P and SUP F C. Continuous prediction of human joint mechanics using EMG signals: A review of model-based and model-free approaches[J]. IEEE Transactions on Medical Robotics and Bionics, 2023, 5(3): 528–546. doi: 10.1109/TMRB.2023.3292451.
|
[2] |
ZENG Chao, YANG Chenguang, CHENG Hong, et al. Simultaneously encoding movement and sEMG-based stiffness for robotic skill learning[J]. IEEE Transactions on Industrial Informatics, 2021, 17(2): 1244–1252. doi: 10.1109/TII.2020.2984482.
|
[3] |
CHEN Qingzheng and TAO Qing. Estimating finger joint angles from surface electromyography using convolutional neural networks[C]. 2024 China Automation Congress, Qingdao, China, 2024. doi: 10.1109/CAC63892.2024.10865263.
|
[4] |
ZHANG Haoshi, PENG Boxing, TIAN Lan, et al. Continuous Kalman estimation method for finger kinematics tracking from surface electromyography[J]. Cyborg and Bionic Systems, 2024, 5: 0094. doi: 10.34133/cbsystems.0094.
|
[5] |
ROLANDINO G, GAGLIARDI M, MARTINS T, et al. Developing RPC-Net: Leveraging high-density electromyography and machine learning for improved hand position estimation[J]. IEEE Transactions on Biomedical Engineering, 2024, 71(5): 1617–1627. doi: 10.1109/TBME.2023.3346192.
|
[6] |
PIZZOLATO S, TAGLIAPIETRA L, COGNOLATO M, et al. Comparison of six electromyography acquisition setups on hand movement classification tasks[J]. PLoS One, 2017, 12(10): e0186132. doi: 10.1371/journal.pone.0186132.
|
[7] |
KRASOULIS A, KYRANOU I, ERDEN M S, et al. Improved prosthetic hand control with concurrent use of myoelectric and inertial measurements[J]. Journal of NeuroEngineering and Rehabilitation, 2017, 14(1): 71. doi: 10.1186/s12984-017-0284-4.
|
[8] |
ATZORI M, GIJSBERTS A, CASTELLINI C, et al. Electromyography data for non-invasive naturally-controlled robotic hand prostheses[J]. Scientific Data, 2014, 1(1): 140053. doi: 10.1038/sdata.2014.53.
|
[9] |
QUIVIRA F, KOIKE-AKINO T, WANG Ye, et al. Translating sEMG signals to continuous hand poses using recurrent neural networks[C]. 2018 IEEE EMBS International Conference on Biomedical & Health Informatics, Las Vegas, USA, 2018. doi: 10.1109/BHI.2018.8333395.
|
[10] |
WANG Zijian, XIONG Caihua, and ZHANG Qin. Enhancing the online estimation of finger kinematics from sEMG using LSTM with attention mechanisms[J]. Biomedical Signal Processing and Control, 2024, 92: 105971. doi: 10.1016/j.bspc.2024.105971.
|
[11] |
BAO Tianzhe, ZHAO Yihui, ZAIDI S A R, et al. A deep Kalman filter network for hand kinematics estimation using sEMG[J]. Pattern Recognition Letters, 2021, 143: 88–94. doi: 10.1016/j.patrec.2021.01.001.
|
[12] |
SÎMPETRU R C, CNEJEVICI V, FARINA D, et al. Influence of spatio-temporal filtering on hand kinematics estimation from high-density EMG signals[J]. Journal of Neural Engineering, 2024, 21(2): 026014. doi: 10.1088/1741-2552/ad3498.
|
[13] |
WENG Zihan, ZHANG Xiabing, MOU Yufeng, et al. A hybrid CNN-transformer approach for continuous fine finger motion decoding from sEMG signals[C]. 2024 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications, Xi’an, China, 2024. doi: 10.1109/CIVEMSA58715.2024.10586636.
|
[14] |
KRASOULIS A, VIJAYAKUMAR S, and NAZARPOUR K. Effect of user practice on prosthetic finger control with an intuitive myoelectric decoder[J]. Frontiers in Neuroscience, 2019, 13: 891. doi: 10.3389/fnins.2019.00891.
|
[15] |
GRACIA-IBÁÑEZ V, VERGARA M, BUFFI J H, et al. Across-subject calibration of an instrumented glove to measure hand movement for clinical purposes[J]. Computer Methods in Biomechanics and Biomedical Engineering, 2017, 20(6): 587–597. doi: 10.1080/10255842.2016.1265950.
|
[16] |
KUZBORSKIJ I, GIJSBERTS A, and CAPUTO B. On the challenge of classifying 52 hand movements from surface electromyography[C]. 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, USA, 2012. doi: 10.1109/EMBC.2012.6347099.
|
[17] |
JIANG Shuo, GAO Qinghua, LIU Huaiyang, et al. A novel, co-located EMG-FMG-sensing wearable armband for hand gesture recognition[J]. Sensors and Actuators A: Physical, 2020, 301: 111738. doi: 10.1016/j.sna.2019.111738.
|
[18] |
ROLANDINO G, ZANGRANDI C, VIEIRA T, et al. HDE-Array: Development and validation of a new dry electrode array design to acquire HD-sEMG for hand position estimation[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2024, 32: 4004–4013. doi: 10.1109/TNSRE.2024.3490796.
|
[19] |
ROMERO J, TZIONAS D, and BLACK M J. Embodied hands: Modeling and capturing hands and bodies together[J]. ACM Transactions on Graphics (TOG), 2017, 36(6): 245. doi: 10.1145/3130800.3130883.
|
[20] |
YANG Lixin, ZHAN Xinyu, LI Kailin, et al. CPF: Learning a contact potential field to model the hand-object interaction[C]. 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021. doi: 10.1109/ICCV48922.2021.01091.
|
[21] |
陈从平, 郁春明, 闫焕章, 等. 基于改进Transformer的三维人体姿态估计[J]. 传感器与微系统, 2024, 43(6): 117–121. doi: 10.13873/J.1000-9787(2024)06-0117-05.
CHEN Congping, YU Chunming, YAN Huanzhang, et al. 3D human body pose estimation based on improved Transformer[J]. Transducer and Microsystem Technologies, 2024, 43(6): 117–121. doi: 10.13873/J.1000-9787(2024)06-0117-05.
|
[22] |
ZHOU Haoyi, ZHANG Shanghang, PENG Jieqi, et al. Informer: Beyond efficient transformer for long sequence time-series forecasting[C]. The 35th AAAI Conference on Artificial Intelligence, 2021: 11106–11115. doi: 10.1609/aaai.v35i12.17325.
|
[23] |
HU Jie, SHEN Li, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011–2023. doi: 10.1109/TPAMI.2019.2913372.
|
[24] |
TANZARELLA S, DI DOMENICO D, FORSIUK I, et al. Arm muscle synergies enhance hand posture prediction in combination with forearm muscle synergies[J]. Journal of Neural Engineering, 2024, 21(2): 026043. doi: 10.1088/1741-2552/ad38dd.
|
[25] |
ZANGHIERI M, BENATTI S, BURRELLO A, et al. sEMG-based regression of hand kinematics with temporal convolutional networks on a low-power edge microcontroller[C]. 2021 IEEE International Conference on Omni-Layer Intelligent Systems, Barcelona, Spain, 2021. doi: 10.1109/COINS51742.2021.9524188.
|