Advanced Search
Volume 47 Issue 6
Jun.  2025
Turn off MathJax
Article Contents
ZHANG Meng, WANG Linan, ZHENG Dezhi, YI Xiaojian. Fractional-Order Sliding Mode Fault-Tolerant Attitude Controller for Spacecraft[J]. Journal of Electronics & Information Technology, 2025, 47(6): 1712-1722. doi: 10.11999/JEIT250025
Citation: ZHANG Meng, WANG Linan, ZHENG Dezhi, YI Xiaojian. Fractional-Order Sliding Mode Fault-Tolerant Attitude Controller for Spacecraft[J]. Journal of Electronics & Information Technology, 2025, 47(6): 1712-1722. doi: 10.11999/JEIT250025

Fractional-Order Sliding Mode Fault-Tolerant Attitude Controller for Spacecraft

doi: 10.11999/JEIT250025 cstr: 32379.14.JEIT250025
Funds:  The National Natural Science Foundation of China (62325304, U22B2046, U24A20279), Jiangsu Provincial Scientific Research Center of Applied Mathematics (BK20233002)
  • Received Date: 2025-01-10
  • Rev Recd Date: 2025-05-13
  • Available Online: 2025-06-18
  • Publish Date: 2025-06-30
  •   Objective  Spacecraft attitude control under complex operational conditions remains limited by inadequate controller adaptability, insufficient precision, and rapid chattering near the sliding surface. Fractional-Order Sliding Mode Control (FOSMC), which integrates fractional calculus into control algorithms, offers improved modeling flexibility and robustness. Compared with conventional integer-order controllers, fractional-order controllers yield smoother responses and enhanced dynamic behavior. This study proposes a novel fault-tolerant control strategy that combines FOSMC with fault accommodation mechanisms to achieve accurate spacecraft attitude tracking in the presence of system faults and environmental disturbances.  Methods  A finite-time disturbance observer is proposed to unify actuator faults, inertia uncertainties, and external disturbances into a single lumped term. This formulation allows for accurate estimation of both the system state and disturbances, supporting effective compensation. The observer’s fast convergence and robustness are analytically demonstrated using finite-time stability theory. To further accelerate convergence and mitigate the chattering typically observed in conventional sliding mode control, a finite-time fault-tolerant controller based on fractional-order sliding mode is developed. This controller ensures finite-time stabilization of spacecraft attitude and angular velocity.  Results and Discussions  To evaluate the effectiveness and performance advantages of the proposed method, a comparative analysis is conducted against an Integer-Order Sliding Mode Controller (IOSMC) using MATLAB simulations. Figure 1 shows the estimation error of the proposed finite-time observer, demonstrating its ability to rapidly and accurately estimate the lumped disturbance term. Figure 2 presents the attitude response trajectories under both control strategies, with blue and red lines corresponding to the fractional-order and integer-order controllers, respectively. Although both methods successfully track the desired attitude, the FOSMC exhibits significantly faster convergence. Figure 3 displays the angular velocity error curves, indicating that the FOSMC achieves finite-time stabilization. In comparison with the IOSMC, the proposed controller yields quicker convergence and reduced steady-state error. Figure 4 illustrates the control torque profiles, revealing that the FOSMC produces smoother torque outputs.  Conclusions  This study proposes a spacecraft attitude controller based on fractional-order sliding mode theory to reduce the high-frequency chattering observed near the sliding surface in conventional terminal sliding mode control. By incorporating fractional-order calculus into the control framework, a fault-tolerant strategy is developed to enhance the performance of spacecraft attitude systems under uncertain and faulty conditions. Simulation results validate the following advantages: (1) Compared with the IOSMC algorithm, the proposed controller achieves faster convergence and improved chattering suppression. (2) Actuator faults, inertia uncertainties, and external disturbances are consolidated into a unified disturbance term, which is accurately estimated by a finite-time disturbance observer for effective compensation. (3) The use of a fractional-order non-singular terminal sliding surface, together with Lyapunov-based analysis, provides a rigorous guarantee of finite-time stability. Moreover, the fractional-order sliding surface increases the design flexibility, allowing broader optimization of controller parameters. This work addresses finite-time fault-tolerant control for spacecraft attitude systems. Future research may investigate fixed-time fault-tolerant control approaches to further improve robustness and ensure consistent response times.
  • loading
  • [1]
    江碧涛, 温广辉, 周佳玲, 等. 智能无人集群系统跨域协同技术研究现状与展望[J]. 中国工程科学, 2024, 26(1): 117–126. doi: 10.15302/J-SSCAE-2024.01.015.

    JIANG Bitao, WEN Guanghui, ZHOU Jialing, et al. Cross-domain cooperative technology of intelligent unmanned swarm systems: Current status and prospects[J]. Strategic Study of CAE, 2024, 26(1): 117–126. doi: 10.15302/J-SSCAE-2024.01.015.
    [2]
    王利楠, 温广辉, 伊枭剑. 状态约束下的多飞行器有限时间姿态一致性控制[J]. 现代防御技术, 2024, 52(2): 124–131. doi: 10.3969/j.issn.1009-086x.2024.02.014.

    WANG Linan, WEN Guanghui, and YI Xiaojian. Finite-time attitude consensus control of multiple unmanned aerial vehicles under state constraints[J]. Modern Defense Technology, 2024, 52(2): 124–131. doi: 10.3969/j.issn.1009-086x.2024.02.014.
    [3]
    胡子晅, 周佳玲, 王利楠, 等. 多BTT导弹滚转通道姿态约束下的固定时间姿态协调控制[J]. 系统工程与电子技术, 2024, 46(6): 2065–2072. doi: 10.12305/j.issn.1001-506X.2024.06.24.

    HU Zixuan, ZHOU Jialing, WANG Linan, et al. Fixed-time coordinated attitude control for roll channels of multiple BTT missiles with attitude constraints[J]. Systems Engineering and Electronics, 2024, 46(6): 2065–2072. doi: 10.12305/j.issn.1001-506X.2024.06.24.
    [4]
    YANG Ze, MA Jie, JI Ruihang, et al. IAR-STSCKF-based fault diagnosis and reconstruction for spacecraft attitude control systems[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 3526112. doi: 10.1109/TIM.2022.3212116.
    [5]
    GAO Han, XIA Yuanqing, ZHANG Jinhui, et al. Finite time fault tolerant output feedback attitude control of spacecraft formation with guaranteed performance[J]. International Journal of Robust and Nonlinear Control, 2021, 31(10): 4664–4688. doi: 10.1002/rnc.5504.
    [6]
    SHAO Xiaodong, HU Qinglei, SHI Yang, et al. Fault-tolerant control for full-state error constrained attitude tracking of uncertain spacecraft[J]. Automatica, 2023, 151: 110907. doi: 10.1016/j.automatica.2023.110907.
    [7]
    FAN Liming, HUANG Hai, and ZHOU Kaixing. Robust fault-tolerant attitude control for satellite with multiple uncertainties and actuator faults[J]. Chinese Journal of Aeronautics, 2020, 33(12): 3380–3394. doi: 10.1016/j.cja.2020.06.026.
    [8]
    MA Yajie, JIANG Bin, TAO Gang, et al. Minimum-eigenvalue-based fault-tolerant adaptive dynamic control for spacecraft[J]. Journal of Guidance, Control, and Dynamics, 2020, 43(9): 1764–1771. doi: 10.2514/1.G004394.
    [9]
    GAO Shihong, JING Yuanwei, DIMIROVSKI G M, et al. Adaptive fuzzy fault-tolerant control for the attitude tracking of spacecraft within finite time[J]. Acta Astronautica, 2021, 189: 166–180. doi: 10.1016/j.actaastro.2021.08.033.
    [10]
    MEI Yafei, LIAO Ying, GONG Kejie, et al. Fuzzy adaptive sliding mode fault estimation and fixed-time fault-tolerant control for coupled spacecraft based on SE(3)[J]. Aerospace Science and Technology, 2022, 126: 107673. doi: 10.1016/j.ast.2022.107673.
    [11]
    MENG Qingkai, YANG Hao, and JIANG Bin. Second-order sliding-mode on SO(3) and fault-tolerant spacecraft attitude control[J]. Automatica, 2023, 149: 110814. doi: 10.1016/j.automatica.2022.110814.
    [12]
    AMRR S M, SARKAR R, BANERJEE A, et al. Fault-tolerant finite-time adaptive higher order sliding mode control with optimized parameters for attitude stabilization of spacecraft[J]. International Journal of Robust and Nonlinear Control, 2022, 32(5): 2845–2863. doi: 10.1002/rnc.5934.
    [13]
    KHODAVERDIAN M and MALEKZADEH M. Fault-tolerant model predictive sliding mode control with fixed-time attitude stabilization and vibration suppression of flexible spacecraft[J]. Aerospace Science and Technology, 2023, 139: 108381. doi: 10.1016/j.ast.2023.108381.
    [14]
    BAI Yuzhi, SUN Huijie, WEN Jie, et al. Fault-tolerant control for the linearized spacecraft attitude control system with Markovian switching[J]. Journal of the Franklin Institute, 2022, 359(17): 9814–9835. doi: 10.1016/j.jfranklin.2022.08.054.
    [15]
    GUI Haichao. Observer-based fault-tolerant spacecraft attitude tracking using sequential Lyapunov analyses[J]. IEEE Transactions on Automatic Control, 2021, 66(12): 6108–6114. doi: 10.1109/TAC.2021.3062159.
    [16]
    LEE D. Fault-tolerant finite-time controller for attitude tracking of rigid spacecraft using intermediate quaternion[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(1): 540–553. doi: 10.1109/TAES.2020.3024399.
    [17]
    CHEN Wei and HU Qinglei. Sliding-mode-based attitude tracking control of spacecraft under reaction wheel uncertainties[J]. IEEE/CAA Journal of Automatica Sinica, 2023, 10(6): 1475–1487. doi: 10.1109/JAS.2022.105665.
    [18]
    HU Qinglei, SHAO Xiaodong, and CHEN Wenhua. Robust fault-tolerant tracking control for spacecraft proximity operations using time-varying sliding mode[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(1): 2–17. doi: 10.1109/TAES.2017.2729978.
    [19]
    DUAN Wenjie, WANG Dayi, and LIU Chengrui. Integral sliding mode fault-tolerant control for spacecraft with uncertainties and saturation[J]. Asian Journal of Control, 2017, 19(1): 372–381. doi: 10.1002/asjc.1365.
    [20]
    LABBADI M, BOUKAL Y, TALEB M, et al. Fractional order sliding mode control for the tracking problem of Quadrotor UAV under external disturbances[C]. 2020 European Control Conference (ECC), St. Petersburg, Russia, 2020: 1595–1600. doi: 10.23919/ECC51009.2020.9143707.
    [21]
    RAZMI H and AFSHINFAR S. Neural network-based adaptive sliding mode control design for position and attitude control of a quadrotor UAV[J]. Aerospace Science and Technology, 2019, 91: 12–27. doi: 10.1016/j.ast.2019.04.055.
    [22]
    WANG Hongbin, LI Ning, and LUO Qianda. Adaptive fractional-order nonsingular fast terminal sliding mode formation control of multiple quadrotor UAVs-based distributed estimator[J]. Asian Journal of Control, 2023, 25(5): 3671–3686. doi: 10.1002/asjc.3043.
    [23]
    MOFID O and MOBAYEN S. Robust fractional-order sliding mode tracker for quad-rotor UAVs: Event-triggered adaptive backstepping approach under disturbance and uncertainty[J]. Aerospace Science and Technology, 2024, 146: 108916. doi: 10.1016/j.ast.2024.108916.
    [24]
    AMRR S M and NABI M. Finite-time fault tolerant attitude tracking control of spacecraft using robust nonlinear disturbance observer with anti-unwinding approach[J]. Advances in Space Research, 2020, 66(7): 1659–1671. doi: 10.1016/j.asr.2020.06.019.
    [25]
    AMRR S M, BANERJEE A, and NABI M. Fault-tolerant attitude control of small spacecraft using robust artificial time-delay approach[J]. IEEE Journal on Miniaturization for Air and Space Systems, 2020, 1(3): 179–187. doi: 10.1109/JMASS.2020.3022685.
    [26]
    ZHANG Xin and SHI Ran. Adaptive fractional-order nonsingular fast terminal sliding mode control for manipulators[J]. Complexity, 2021, 2021(1): 7924953. doi: 10.1155/2021/7924953.
    [27]
    BHAT S P and BERNSTEIN D S. Finite-time stability of continuous autonomous systems[J]. SIAM Journal on Control and Optimization, 2000, 38(3): 751–766. doi: 10.1137/S0363012997321358.
    [28]
    SHTESSEL Y B, SHKOLNIKOV I A, and LEVANT A. Smooth second-order sliding modes: Missile guidance application[J]. Automatica, 2007, 43(8): 1470–1476. doi: 10.1016/j.automatica.2007.01.008.
    [29]
    HILFER R. Fractional diffusion based on Riemann-Liouville fractional derivatives[J]. The Journal of Physical Chemistry B, 2000, 104(16): 3914–3917. doi: 10.1021/jp9936289.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(1)

    Article Metrics

    Article views (148) PDF downloads(29) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return