Citation: | ZHANG Meng, WANG Linan, ZHENG Dezhi, YI Xiaojian. Fractional-Order Sliding Mode Fault-Tolerant Attitude Controller for Spacecraft[J]. Journal of Electronics & Information Technology, 2025, 47(6): 1712-1722. doi: 10.11999/JEIT250025 |
[1] |
江碧涛, 温广辉, 周佳玲, 等. 智能无人集群系统跨域协同技术研究现状与展望[J]. 中国工程科学, 2024, 26(1): 117–126. doi: 10.15302/J-SSCAE-2024.01.015.
JIANG Bitao, WEN Guanghui, ZHOU Jialing, et al. Cross-domain cooperative technology of intelligent unmanned swarm systems: Current status and prospects[J]. Strategic Study of CAE, 2024, 26(1): 117–126. doi: 10.15302/J-SSCAE-2024.01.015.
|
[2] |
王利楠, 温广辉, 伊枭剑. 状态约束下的多飞行器有限时间姿态一致性控制[J]. 现代防御技术, 2024, 52(2): 124–131. doi: 10.3969/j.issn.1009-086x.2024.02.014.
WANG Linan, WEN Guanghui, and YI Xiaojian. Finite-time attitude consensus control of multiple unmanned aerial vehicles under state constraints[J]. Modern Defense Technology, 2024, 52(2): 124–131. doi: 10.3969/j.issn.1009-086x.2024.02.014.
|
[3] |
胡子晅, 周佳玲, 王利楠, 等. 多BTT导弹滚转通道姿态约束下的固定时间姿态协调控制[J]. 系统工程与电子技术, 2024, 46(6): 2065–2072. doi: 10.12305/j.issn.1001-506X.2024.06.24.
HU Zixuan, ZHOU Jialing, WANG Linan, et al. Fixed-time coordinated attitude control for roll channels of multiple BTT missiles with attitude constraints[J]. Systems Engineering and Electronics, 2024, 46(6): 2065–2072. doi: 10.12305/j.issn.1001-506X.2024.06.24.
|
[4] |
YANG Ze, MA Jie, JI Ruihang, et al. IAR-STSCKF-based fault diagnosis and reconstruction for spacecraft attitude control systems[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 3526112. doi: 10.1109/TIM.2022.3212116.
|
[5] |
GAO Han, XIA Yuanqing, ZHANG Jinhui, et al. Finite time fault tolerant output feedback attitude control of spacecraft formation with guaranteed performance[J]. International Journal of Robust and Nonlinear Control, 2021, 31(10): 4664–4688. doi: 10.1002/rnc.5504.
|
[6] |
SHAO Xiaodong, HU Qinglei, SHI Yang, et al. Fault-tolerant control for full-state error constrained attitude tracking of uncertain spacecraft[J]. Automatica, 2023, 151: 110907. doi: 10.1016/j.automatica.2023.110907.
|
[7] |
FAN Liming, HUANG Hai, and ZHOU Kaixing. Robust fault-tolerant attitude control for satellite with multiple uncertainties and actuator faults[J]. Chinese Journal of Aeronautics, 2020, 33(12): 3380–3394. doi: 10.1016/j.cja.2020.06.026.
|
[8] |
MA Yajie, JIANG Bin, TAO Gang, et al. Minimum-eigenvalue-based fault-tolerant adaptive dynamic control for spacecraft[J]. Journal of Guidance, Control, and Dynamics, 2020, 43(9): 1764–1771. doi: 10.2514/1.G004394.
|
[9] |
GAO Shihong, JING Yuanwei, DIMIROVSKI G M, et al. Adaptive fuzzy fault-tolerant control for the attitude tracking of spacecraft within finite time[J]. Acta Astronautica, 2021, 189: 166–180. doi: 10.1016/j.actaastro.2021.08.033.
|
[10] |
MEI Yafei, LIAO Ying, GONG Kejie, et al. Fuzzy adaptive sliding mode fault estimation and fixed-time fault-tolerant control for coupled spacecraft based on SE(3)[J]. Aerospace Science and Technology, 2022, 126: 107673. doi: 10.1016/j.ast.2022.107673.
|
[11] |
MENG Qingkai, YANG Hao, and JIANG Bin. Second-order sliding-mode on SO(3) and fault-tolerant spacecraft attitude control[J]. Automatica, 2023, 149: 110814. doi: 10.1016/j.automatica.2022.110814.
|
[12] |
AMRR S M, SARKAR R, BANERJEE A, et al. Fault-tolerant finite-time adaptive higher order sliding mode control with optimized parameters for attitude stabilization of spacecraft[J]. International Journal of Robust and Nonlinear Control, 2022, 32(5): 2845–2863. doi: 10.1002/rnc.5934.
|
[13] |
KHODAVERDIAN M and MALEKZADEH M. Fault-tolerant model predictive sliding mode control with fixed-time attitude stabilization and vibration suppression of flexible spacecraft[J]. Aerospace Science and Technology, 2023, 139: 108381. doi: 10.1016/j.ast.2023.108381.
|
[14] |
BAI Yuzhi, SUN Huijie, WEN Jie, et al. Fault-tolerant control for the linearized spacecraft attitude control system with Markovian switching[J]. Journal of the Franklin Institute, 2022, 359(17): 9814–9835. doi: 10.1016/j.jfranklin.2022.08.054.
|
[15] |
GUI Haichao. Observer-based fault-tolerant spacecraft attitude tracking using sequential Lyapunov analyses[J]. IEEE Transactions on Automatic Control, 2021, 66(12): 6108–6114. doi: 10.1109/TAC.2021.3062159.
|
[16] |
LEE D. Fault-tolerant finite-time controller for attitude tracking of rigid spacecraft using intermediate quaternion[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(1): 540–553. doi: 10.1109/TAES.2020.3024399.
|
[17] |
CHEN Wei and HU Qinglei. Sliding-mode-based attitude tracking control of spacecraft under reaction wheel uncertainties[J]. IEEE/CAA Journal of Automatica Sinica, 2023, 10(6): 1475–1487. doi: 10.1109/JAS.2022.105665.
|
[18] |
HU Qinglei, SHAO Xiaodong, and CHEN Wenhua. Robust fault-tolerant tracking control for spacecraft proximity operations using time-varying sliding mode[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(1): 2–17. doi: 10.1109/TAES.2017.2729978.
|
[19] |
DUAN Wenjie, WANG Dayi, and LIU Chengrui. Integral sliding mode fault-tolerant control for spacecraft with uncertainties and saturation[J]. Asian Journal of Control, 2017, 19(1): 372–381. doi: 10.1002/asjc.1365.
|
[20] |
LABBADI M, BOUKAL Y, TALEB M, et al. Fractional order sliding mode control for the tracking problem of Quadrotor UAV under external disturbances[C]. 2020 European Control Conference (ECC), St. Petersburg, Russia, 2020: 1595–1600. doi: 10.23919/ECC51009.2020.9143707.
|
[21] |
RAZMI H and AFSHINFAR S. Neural network-based adaptive sliding mode control design for position and attitude control of a quadrotor UAV[J]. Aerospace Science and Technology, 2019, 91: 12–27. doi: 10.1016/j.ast.2019.04.055.
|
[22] |
WANG Hongbin, LI Ning, and LUO Qianda. Adaptive fractional-order nonsingular fast terminal sliding mode formation control of multiple quadrotor UAVs-based distributed estimator[J]. Asian Journal of Control, 2023, 25(5): 3671–3686. doi: 10.1002/asjc.3043.
|
[23] |
MOFID O and MOBAYEN S. Robust fractional-order sliding mode tracker for quad-rotor UAVs: Event-triggered adaptive backstepping approach under disturbance and uncertainty[J]. Aerospace Science and Technology, 2024, 146: 108916. doi: 10.1016/j.ast.2024.108916.
|
[24] |
AMRR S M and NABI M. Finite-time fault tolerant attitude tracking control of spacecraft using robust nonlinear disturbance observer with anti-unwinding approach[J]. Advances in Space Research, 2020, 66(7): 1659–1671. doi: 10.1016/j.asr.2020.06.019.
|
[25] |
AMRR S M, BANERJEE A, and NABI M. Fault-tolerant attitude control of small spacecraft using robust artificial time-delay approach[J]. IEEE Journal on Miniaturization for Air and Space Systems, 2020, 1(3): 179–187. doi: 10.1109/JMASS.2020.3022685.
|
[26] |
ZHANG Xin and SHI Ran. Adaptive fractional-order nonsingular fast terminal sliding mode control for manipulators[J]. Complexity, 2021, 2021(1): 7924953. doi: 10.1155/2021/7924953.
|
[27] |
BHAT S P and BERNSTEIN D S. Finite-time stability of continuous autonomous systems[J]. SIAM Journal on Control and Optimization, 2000, 38(3): 751–766. doi: 10.1137/S0363012997321358.
|
[28] |
SHTESSEL Y B, SHKOLNIKOV I A, and LEVANT A. Smooth second-order sliding modes: Missile guidance application[J]. Automatica, 2007, 43(8): 1470–1476. doi: 10.1016/j.automatica.2007.01.008.
|
[29] |
HILFER R. Fractional diffusion based on Riemann-Liouville fractional derivatives[J]. The Journal of Physical Chemistry B, 2000, 104(16): 3914–3917. doi: 10.1021/jp9936289.
|