Citation: | ZHOU Chuanxin, JIAN Gang, LI Lingshu, YANG Yi, HU Yu, LIU Zhengming, ZHANG Wei, RAO Zhenzhen, LI Yunxiao, WU Chao. Long-Term Trajectory Prediction Model Based on Points of Interest and Joint Loss Function[J]. Journal of Electronics & Information Technology, 2025, 47(8): 2841-2849. doi: 10.11999/JEIT250011 |
[1] |
SHUKLA P, SHUKLA S, and SINGH A K. Trajectory-prediction techniques for unmanned aerial vehicles (UAVs): A comprehensive survey[J]. IEEE Communications Surveys & Tutorials, 2025, 27(3): 1867–1910. doi: 10.1109/COMST.2024.3471671.
|
[2] |
LIU Mengmeng, CHENG Hao, CHEN Lin, et al. LAformer: Trajectory prediction for autonomous driving with lane-aware scene constraints[C]. The 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle, USA, 2024: 2039–2049. doi: 10.1109/cvprw63382.2024.00209.
|
[3] |
CONG Peichao, DENG Murong, XIAO Yixuan, et al. Trajectory prediction based on the dynamic characteristics and coupling relationships among vehicles in highway scenarios[J]. Engineering Applications of Artificial Intelligence, 2025, 140: 109718. doi: 10.1016/j.engappai.2024.109718.
|
[4] |
SHIN G H and YANG H. Vessel trajectory prediction in harbors: A deep learning approach with maritime-based data preprocessing and Berthing Side Integration[J]. Ocean Engineering, 2025, 316: 119908. doi: 10.1016/j.oceaneng.2024.119908.
|
[5] |
张鹏, 杨涛, 刘亚楠, 等. 基于CNN-LSTM的QAR数据特征提取与预测[J]. 计算机应用研究, 2019, 36(10): 2958–2961. doi: 10.19734/j.issn.1001-3695.2018.04.0214.
ZHANG Peng, YANG Tao, LIU Yanan, et al. Feature extraction and prediction of QAR data based on CNN-LSTM[J]. Application Research of Computers, 2019, 36(10): 2958–2961. doi: 10.19734/j.issn.1001-3695.2018.04.0214.
|
[6] |
XIE Guo, SHANG Gnqi, FEI Rong, et al. Motion trajectory prediction based on a CNN-LSTM sequential model[J]. Science China Information Sciences, 2020, 63(11): 212207. doi: 10.1007/s11432-019-2761-y.
|
[7] |
NAN Tian, CAO Wengeng, WANG Zhe, et al. Evaluation of shallow groundwater dynamics after water supplement in North China Plain based on attention-GRU model[J]. Journal of Hydrology, 2023, 625: 130085. doi: 10.1016/j.jhydrol.2023.130085.
|
[8] |
AMIN F, GHARAMI K, and SEN B. TrajectoFormer: Transformer-based trajectory prediction of autonomous vehicles with spatio-temporal neighborhood considerations[J]. International Journal of Computational Intelligence Systems, 2024, 17(1): 87. doi: 10.1007/s44196-024-00410-1.
|
[9] |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]. The 31st International Conference on Neural Information Processing Systems, Long Beach, USA, 2017: 6000–6010.
|
[10] |
唐光旭. 基于Transformer和Bi-LSTM模型的船舶轨迹预测[J]. 珠江水运, 2024(17): 109–111. doi: 10.14125/j.cnki.zjsy.2024.17.024.
TANG Guangxu. Ship trajectory prediction based on Transformer and Bi-LSTM model[J]. Pearl River Water Transport, 2024(17): 109–111. doi: 10.14125/j.cnki.zjsy.2024.17.024.
|
[11] |
SHAFIENYA H and REGAN A C. 4D flight trajectory prediction using a hybrid deep learning prediction method based on ADS-B technology: A case study of Hartsfield–Jackson Atlanta international airport (ATL)[J]. Transportation Research Part C: Emerging Technologies, 2022, 144: 103878. doi: 10.1016/j.trc.2022.103878.
|
[12] |
NGUYEN D and FABLET R. A transformer network with sparse augmented data representation and cross entropy loss for AIS-based vessel trajectory prediction[J]. IEEE Access, 2024, 12: 21596–21609. doi: 10.1109/ACCESS.2024.3349957.
|
[13] |
PATRIKAR J, MOON B, OH J, et al. Predicting like a pilot: Dataset and method to predict socially-aware aircraft trajectories in non-towered terminal airspace[C]. 2022 International Conference on Robotics and Automation (ICRA), Philadelphia, USA, 2022: 2525–2531. doi: 10.1109/ICRA46639.2022.9811972.
|
[14] |
NGUYEN D, VADAINE R, HAJDUCH G, et al. GeoTrackNet—a maritime anomaly detector using probabilistic neural network representation of AIS tracks and a contrario detection[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(6): 5655–5667. doi: 10.1109/TITS.2021.3055614.
|