Citation: | YAO Xudong, GUO Yaping, LIU Mengyang, MENG Gang, LI Yang, ZHANG Haopeng. An Uncertainty-driven Pixel-level Adversarial Noise Detection Method for Remote Sensing Images[J]. Journal of Electronics & Information Technology, 2025, 47(6): 1633-1644. doi: 10.11999/JEIT241157 |
[1] |
李树涛, 李聪妤, 康旭东. 多源遥感图像融合发展现状与未来展望[J]. 遥感学报, 2021, 25(1): 148–166. doi: 10.11834/jrs.20210259.
LI Shutao, LI Congyu, and KANG Xudong. Development status and future prospects of multi-source remote sensing image fusion[J]. National Remote Sensing Bulletin, 2021, 25(1): 148–166. doi: 10.11834/jrs.20210259.
|
[2] |
付琨, 卢宛萱, 刘小煜, 等. 遥感基础模型发展综述与未来设想[J]. 遥感学报, 2024, 28(7): 1667–1680. doi: 10.11834/jrs.20233313.
FU Kun, LU Wanxuan, LIU Xiaoyu, et al. A comprehensive survey and assumption of remote sensing foundation modal[J]. National Remote Sensing Bulletin, 2024, 28(7): 1667–1680. doi: 10.11834/jrs.20233313.
|
[3] |
WANG Yu, SHAO Zhenfeng, LU Tao, et al. Remote sensing image super-resolution via multiscale enhancement network[J]. IEEE Geoscience and Remote Sensing Letters, 2023, 20: 5000905. doi: 10.1109/LGRS.2023.3248069.
|
[4] |
YAO Xudong, GUO Qing, and LI An. Cloud detection in optical remote sensing images with deep semi-supervised and active learning[J]. IEEE Geoscience and Remote Sensing Letters, 2023, 20: 6006805. doi: 10.1109/LGRS.2023.3287537.
|
[5] |
BANIECKI H and BIECEK P. Adversarial attacks and defenses in explainable artificial intelligence: A survey[J]. Information Fusion, 2024, 107: 102303. doi: 10.1016/j.inffus.2024.102303.
|
[6] |
SZEGEDY C, ZAREMBA W, SUTSKEVER I, et al. Intriguing properties of neural networks[C]. The 2nd International Conference on Learning Representations, Banff, Canada, 2014: 1–11.
|
[7] |
GOODFELLOW I J, SHLENS J, and SZEGEDY C. Explaining and harnessing adversarial examples[C]. The 3rd International Conference on Learning Representations, San Diego, USA, 2015: 1–11.
|
[8] |
LI Yanjie, LI Yiquan, DAI Xuelong, et al. Physical-world optical adversarial attacks on 3D face recognition[C]. The IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023: 24699–24708. doi: 10.1109/CVPR52729.2023.02366.
|
[9] |
CARRARA F, FALCHI F, AMATO G, et al. Detecting adversarial inputs by looking in the black box[J]. ERCIM News, 2019, 116: 16–17.
|
[10] |
MA Xingjun, NIU Yuhao, GU Lin, et al. Understanding adversarial attacks on deep learning based medical image analysis systems[J]. Pattern Recognition, 2021, 110: 107332. doi: 10.1016/j.patcog.2020.107332.
|
[11] |
郭凯威, 杨奎武, 张万里, 等. 面向文本识别的对抗样本攻击综述[J]. 中国图象图形学报, 2024, 29(9): 2672–2691. doi: 10.11834/jig.230412.
GUO Kaiwei, YANG Kuiwu, ZHANG Wanli, et al. A review of adversarial examples for optical character recognition[J]. Journal of Image and Graphics, 2024, 29(9): 2672–2691. doi: 10.11834/jig.230412.
|
[12] |
XU Weilin, EVANS D, and QI Yanjun. Feature squeezing: Detecting adversarial examples in deep neural networks[C]. Network and Distributed Systems Security Symposium (NDSS), San Diego, USA, 2018. doi: 10.14722/ndss.2018.23198.
|
[13] |
HENDRYCKS D and GIMPEL K. Early methods for detecting adversarial images[C]. 5th International Conference on Learning Representations, Toulon, France, 2016.
|
[14] |
FEINMAN R, CURTIN R R, SHINTRE S, et al. Detecting adversarial samples from artifacts[EB/OL]. https://arxiv.org/abs/1703.00410, 2017. doi: 10.48550/arXiv.1703.00410.
|
[15] |
LEE K, LEE K, LEE H, et al. A simple unified framework for detecting out-of-distribution samples and adversarial attacks[C]. The 32nd International Conference on Neural Information Processing Systems, Montréal, Canada, 2018: 7167–7177.
|
[16] |
CHEN Kejiang, CHEN Yuefeng, ZHOU Hang, et al. Adversarial examples detection beyond image space[C]. ICASSP 2021–2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, Canada, 2021: 3850–3854. doi: 10.1109/ICASSP39728.2021.9414008.
|
[17] |
METZEN J H, GENEWEIN T, FISCHER V, et al. On detecting adversarial perturbations[C]. 5th International Conference on Learning Representations, Toulon, France, 2017: 1–12.
|
[18] |
KENDALL A and GAL Y. What uncertainties do we need in Bayesian deep learning for computer vision?[C]. The 31st International Conference on Neural Information Processing Systems, Long Beach, USA, 2017: 5580–5590.
|
[19] |
MA Chenxi. Uncertainty-aware GAN for single image super resolution[C]. The 38th AAAI Conference on Artificial Intelligence, Vancouver, Canada, 2024: 4071–4079. doi: 10.1609/aaai.v38i5.28201.
|
[20] |
BUDDENKOTTE T, SANCHEZ L E, CRISPIN-ORTUZAR M, et al. Calibrating ensembles for scalable uncertainty quantification in deep learning-based medical image segmentation[J]. Computers in Biology and Medicine, 2023, 163: 107096. doi: 10.1016/j.compbiomed.2023.107096.
|
[21] |
KURAKIN A, GOODFELLOW I J, and BENGIO S. Adversarial examples in the physical world[M]. YAMPOLSKIY R V. Artificial Intelligence Safety and Security. New York: Chapman and Hall/CRC, 2018: 99–112. doi: 10.1201/9781351251389.
|
[22] |
MOOSAVI-DEZFOOLI S M, FAWZI A, and FROSSARD P. DeepFool: A simple and accurate method to fool deep neural networks[C]. The IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 2574–2582. doi: 10.1109/CVPR.2016.282.
|
[23] |
XIAO Chaowei, LI Bo, ZHU Junyan, et al. Generating adversarial examples with adversarial networks[C]. The 27th International Joint Conference on Artificial Intelligence, Stockholm, Sweden, 2018: 3905–3911.
|
[24] |
刘帅威, 李智, 王国美, 等. 基于Transformer和GAN的对抗样本生成算法[J]. 计算机工程, 2024, 50(2): 180–187. doi: 10.19678/j.issn.1000-3428.0067077.
LIU Shuaiwei, LI Zhi, WANG Guomei, et al. Adversarial example generation algorithm based on transformer and GAN[J]. Computer Engineering, 2024, 50(2): 180–187. doi: 10.19678/j.issn.1000-3428.0067077.
|
[25] |
GONG Zhitao and WANG Wenlu. Adversarial and clean data are not twins[C]. The Sixth International Workshop on Exploiting Artificial Intelligence Techniques for Data Management, Seattle, USA, 2023: 6. doi: 10.1145/3593078.3593935.
|
[26] |
LU Yunfei, CHANG Chenxia, GAO Song, et al. Boosting adversarial example detection via local histogram equalization and spectral feature analysis[J]. The Visual Computer, 2024: 1–18. doi: 10.1007/s00371-024-03734-3.
|
[27] |
BISHOP C M. Mixture density networks[R]. Birmingham, UK: Aston University, 1994.
|
[28] |
DEVRIES T and TAYLOR G W. Learning confidence for out-of-distribution detection in neural networks[EB/OL]. https://arxiv.org/abs/1802.04865, 2018. doi: 10.48550/arXiv.1802.04865.
|
[29] |
HERNÁNDEZ-LOBATO J M and ADAMS R P. Probabilistic backpropagation for scalable learning of Bayesian neural networks[C]. The 32nd International Conference on Machine Learning, Lille, France, 2015: 1861–1869.
|
[30] |
GAL Y and GHAHRAMANI Z. Dropout as a Bayesian approximation: Representing model uncertainty in deep learning[C]. The 33nd International Conference on Machine Learning, New York, USA, 2016: 1050–1059.
|
[31] |
KAR A and BISWAS P K. Fast Bayesian uncertainty estimation and reduction of batch normalized single image super-resolution network[C]. The IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 4957–4966. doi: 10.1109/CVPR46437.2021.00492.
|
[32] |
LIU Tao, CHENG Jun, and TAN Shan. Spectral Bayesian uncertainty for image super-resolution[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023: 18166–18175. doi: 10.1109/CVPR52729.2023.01742.
|
[33] |
BELHASIN O, ROMANO Y, FREEDMAN D, et al. Principal uncertainty quantification with spatial correlation for image restoration problems[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46(5): 3321–3333. doi: 10.1109/TPAMI.2023.3343031.
|
[34] |
IOFFE S and SZEGEDY C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[C]. The 32nd International Conference on Machine Learning, Lille, France, 2015: 448–456.
|
[35] |
KIM J, LEE J K, and LEE K M. Accurate image super-resolution using very deep convolutional networks[C]. The IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 1646–1654. doi: 10.1109/CVPR.2016.182.
|
[36] |
SIMONYAN K and ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]. 3rd International Conference on Learning Representations, San Diego, USA, 2014.
|
[37] |
GHAHRAMANI Z. Probabilistic machine learning and artificial intelligence[J]. Nature, 2015, 521(7553): 452–459. doi: 10.1038/nature14541.
|
[38] |
LI Ke, WAN Gang, CHENG Gong, et al. Object detection in optical remote sensing images: A survey and a new benchmark[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 159: 296–307. doi: 10.1016/j.isprsjprs.2019.11.023.
|