Citation: | HU Yanglin, ZHANG Tiankui, LI Bo, YANG Dingcheng. A Survey on UAV-Enabled Integrated Sensing and Communication Networking and Technologies[J]. Journal of Electronics & Information Technology, 2025, 47(4): 859-875. doi: 10.11999/JEIT241116 |
[1] |
中国电信集团有限公司, 爱立信, 诺基亚, 等. 通感一体低空网络白皮书[R]. 2024.
China Telecom, Ericsson, Nokia, et al. The low-altitude network by integrated sensing and communication[R]. 2024.
|
[2] |
IMT-2020(5G)推进组. 5G无人机应用白皮书[R]. 2018.
IMT-2020 (5G) Promotion Group. White paper on 5G drone applications[R]. 2018.
|
[3] |
陈新颖, 盛敏, 李博, 等. 面向6G的无人机通信综述[J]. 电子与信息学报, 2022, 44(3): 781–789. doi: 10.11999/JEIT210789.
CHEN Xinying, SHENG Min, LI Bo, et al. Survey on unmanned aerial vehicle communications for 6G[J]. Journal of Electronics & Information Technology, 2022, 44(3): 781–789. doi: 10.11999/JEIT210789.
|
[4] |
KIM J H, LEE M C, and LEE T S. Generalized UAV deployment for UAV-assisted cellular networks[J]. IEEE Transactions on Wireless Communications, 2024, 23(7): 7894–7910. doi: 10.1109/twc.2023.3345839.
|
[5] |
LIU An, HUANG Zhe, LI Min, et al. A survey on fundamental limits of integrated sensing and communication[J]. IEEE Communications Surveys & Tutorials, 2022, 24(2): 994–1034. doi: 10.1109/comst.2022.3149272.
|
[6] |
ZHANG Jifa, LU Weidang, XING Chengwen, et al. Intelligent integrated sensing and communication: A survey[J]. Science China Information Sciences, 2025, 68(3): 131301. doi: 10.1007/s11432-024-4205-8.
|
[7] |
BAYESSA G A, CHAI Rong, LIANG Chengchao, et al. Joint UAV deployment and precoder optimization for multicasting and target sensing in UAV-assisted ISAC networks[J]. IEEE Internet of Things Journal, 2024, 11(20): 33392–33405. doi: 10.1109/jiot.2024.3430371.
|
[8] |
王莉, 魏青, 徐连明, 等. 面向通信-导航-感知一体化的应急无人机网络低能耗部署研究[J]. 通信学报, 2022, 43(7): 1–20. doi: 10.11959/j.issn.1000-436x.2022138.
WANG Li, WEI Qing, XU Lianming, et al. Research on low-energy-consumption deployment of emergency UAV network for integrated communication-navigating-sensing[J]. Journal on Communications, 2022, 43(7): 1–20. doi: 10.11959/j.issn.1000-436x.2022138.
|
[9] |
CHENG Xiang, ZHANG Haotian, ZHANG Jianan, et al. Intelligent multi-modal sensing-communication integration: Synesthesia of machines[J]. IEEE Communications Surveys & Tutorials, 2024, 26(1): 258–301. doi: 10.1109/comst.2023.3336917.
|
[10] |
CIUONZO D, DE MAIO A, FOGLIA G, et al. Intrapulse radar-embedded communications via multiobjective optimization[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(4): 2960–2974. doi: 10.1109/taes.2015.140821.
|
[11] |
崔世林, 薛婉雨, 李佳珉. 基于无蜂窝通感一体化系统的无人机轨迹优化[J]. 移动通信, 2024, 48(9): 166–172. doi: 10.3969/j.issn.1006-1010.20240909-0003.
CUI Shilin, XUE Wanyu, and LI Jiamin. UAV trajectory optimization for cellular-free integrated sensing and communication systems[J]. Mobile Communications, 2024, 48(9): 166–172. doi: 10.3969/j.issn.1006-1010.20240909-0003.
|
[12] |
MENG Kaitao, WU Qingqing, MA Shaodan, et al. UAV trajectory and beamforming optimization for integrated periodic sensing and communication[J]. IEEE Wireless Communications Letters, 2022, 11(6): 1211–1215. doi: 10.1109/lwc.2022.3161338.
|
[13] |
YAO Zhiqiang, GUO Xiaona, CHEN Kang, et al. Ranging estimation and implementation with cellular signals for UAV navigation[C]. 98th IEEE Vehicular Technology Conference, Hong Kong, China, 2023: 1–5. doi: 10.1109/vtc2023-fall60731.2023.10333488.
|
[14] |
ZHANG Qixun, SUN Hongzhuo, GAO Xinye, et al. Time-division ISAC enabled connected automated vehicles cooperation algorithm design and performance evaluation[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(7): 2206–2218. doi: 10.1109/jsac.2022.3155506.
|
[15] |
LIU Zechen, LIU Xin, LIU Yuemin, et al. UAV assisted integrated sensing and communications for internet of things: 3D trajectory optimization and resource allocation[J]. IEEE Transactions on Wireless Communications, 2024, 23(8): 8654–8667. doi: 10.1109/twc.2024.3352985.
|
[16] |
QIN Yunhui, ZHANG Zhongshan, LI Xulong, et al. Deep reinforcement learning based resource allocation and trajectory planning in integrated sensing and communications UAV network[J]. IEEE Transactions on Wireless Communications, 2023, 22(11): 8158–8169. doi: 10.1109/twc.2023.3260304.
|
[17] |
MENG Kaitao, HE Xiaofan, WU Qingqing, et al. Multi-UAV collaborative sensing and communication: Joint task allocation and power optimization[J]. IEEE Transactions on Wireless Communications, 2023, 22(6): 4232–4246. doi: 10.1109/twc.2022.3224143.
|
[18] |
CUI Zhichao, HU Jing, CHENG Jian, et al. Multi-domain NOMA for ISAC: Utilizing the DOF in the delay-Doppler domain[J]. IEEE Communications Letters, 2023, 27(2): 726–730. doi: 10.1109/lcomm.2022.3228873.
|
[19] |
DENG Cailian, FANG Xuming, and WANG Xianbin. Beamforming design and trajectory optimization for UAV-empowered adaptable integrated sensing and communication[J]. IEEE Transactions on Wireless Communications, 2023, 22(11): 8512–8526. doi: 10.1109/twc.2023.3264523.
|
[20] |
WU Jun, YUAN Weijie, and HANZO L. When UAVs meet ISAC: Real-time trajectory design for secure communications[J]. IEEE Transactions on Vehicular Technology, 2023, 72(12): 16766–16771. doi: 10.1109/tvt.2023.3290033.
|
[21] |
MAO Weihao, LU Yang, PAN Gaofeng, et al. UAV-assisted communications in SAGIN-ISAC: Mobile user tracking and robust beamforming[J]. IEEE Journal on Selected Areas in Communications, 2025, 43(1): 186–200. doi: 10.1109/jsac.2024.3460065.
|
[22] |
吴韵怡, 刘晨熙, 蔡昌俊, 等. 面向6G智能协作感知的无人机通信系统[J]. 移动通信, 2023, 47(9): 77–83. doi: 10.3969/j.issn.1006-1010.20230909-0001.
WU Yunyi, LIU Chenxi, CAI Changjun, et al. Towards intelligent cooperative sensing in 6G UAV communication systems[J]. Mobile Communications, 2023, 47(9): 77–83. doi: 10.3969/j.issn.1006-1010.20230909-0001.
|
[23] |
KLAUTAU A, GONZALEZ-PRELCIC N, and HEATH R W. LIDAR data for deep learning-based mmWave beam-selection[J]. IEEE Wireless Communications Letters, 2019, 8(3): 909–912. doi: 10.1109/lwc.2019.2899571.
|
[24] |
YAO Peng and WEI Xin. Multi-UAV information fusion and cooperative trajectory optimization in target search[J]. IEEE Systems Journal, 2022, 16(3): 4325–4333. doi: 10.1109/jsyst.2021.3117959.
|
[25] |
LU Bohao, WEI Zhiqing, WU Huici, et al. Deep-learning-based multinode ISAC 4D environmental reconstruction with uplink-downlink cooperation[J]. IEEE Internet of Things Journal, 2024, 11(24): 39512–39526. doi: 10.1109/jiot.2024.3443648.
|
[26] |
IMT-2020(5G)推进组. 5G-Advanced通感融合空口技术方案研究报告[R]. 2024.
IMT-2020(5G) Promotion Group. Research report on 5G-advanced integrated sensing and communication air interface technology[R]. 2024.
|
[27] |
IMT-2020(5G)推进组. 5G-Advanced通感融合网络架构研究报告[R]. 2版. 2024.
IMT-2020(5G) Promotion Group. Research report on 5G-advanced integrated sensing and communication air interface technology[R]. 2nd ed. 2024.
|
[28] |
International Telecommunication Union. Recommendation ITU-R M. 2160 Framework and overall objectives of the future development of IMT for 2030 and beyond[S]. Geneva: International Telecommunication Union, 2023.
|
[29] |
KAUSHIK A, SINGH R, DAYARATHNA S, et al. Towards integrated sensing and communications for 6G: A standardization perspective[J]. arXiv: 2308.01227, 2023. doi: 10.48550/arXiv.2308.01227.
|
[30] |
ZHANG Yuxiang, ZHANG Jianhua, PEI Yuanpeng, et al. Latest progress for 3GPP ISAC channel modeling standardization[J]. Science China Information Sciences, 2024, 67(11): 217301. doi: 10.1007/s11432-024-4172-8.
|
[31] |
MORO S, MANZONI M, LINSALATA F, et al. ISAC technology in action: UAV-based SAR imaging potential[C]. 2024 IEEE International Geoscience and Remote Sensing Symposium, Athens, Greece, 2024: 6550–6554. doi: 10.1109/igarss53475.2024.10642814.
|
[32] |
JING Xiaoye, LIU Fan, MASOUROS C, et al. ISAC from the sky: UAV trajectory design for joint communication and target localization[J]. IEEE Transactions on Wireless Communications, 2024, 23(10): 12857–12872. doi: 10.1109/twc.2024.3396571.
|
[33] |
XU Wenbo, WANG Shu, YAN Shu, et al. An efficient wideband spectrum sensing algorithm for unmanned aerial vehicle communication networks[J]. IEEE Internet of Things Journal, 2019, 6(2): 1768–1780. doi: 10.1109/jiot.2018.2882532.
|
[34] |
孙铭然, 黄子蔚, 白露, 等. 基于感知图像信息的无人机信道路径损耗预测[J]. 模式识别与人工智能, 2023, 36(11): 987–996. doi: 10.16451/j.cnki.issn1003-6059.202311002.
SUN Mingran, HUANG Ziwei, BAI Lu, et al. Sensing image data based unmanned aerial vehicle channel path loss prediction[J]. Pattern Recognition and Artificial Intelligence, 2023, 36(11): 987–996. doi: 10.16451/j.cnki.issn1003-6059.202311002.
|
[35] |
LIU Dingtao, GAO Yuan, HU Shuyan, et al. Trajectory design for integrated sensing and communication enabled by cellular-connected UAV[J]. IEEE Wireless Communications Letters, 2024, 13(7): 1973–1977. doi: 10.1109/lwc.2024.3399268.
|
[36] |
于宝泉, 杨炜伟, 王权, 等. 无人机辅助通感一体化系统中的信息年龄分析优化[J]. 电子与信息学报, 2024, 46(5): 1996–2003. doi: 10.11999/JEIT231175.
YU Baoquan, YANG Weiwei, WANG Quan, et al. Age of information analysis and optimization in unmanned aerial vehicles-assisted integrated sensing and communication systems[J]. Journal of Electronics & Information Technology, 2024, 46(5): 1996–2003. doi: 10.11999/JEIT231175.
|
[37] |
YANG Zheyuan, BI Suzhi, and ZHANG Y J A. Dynamic offloading and trajectory control for UAV-enabled mobile edge computing system with energy harvesting devices[J]. IEEE Transactions on Wireless Communications, 2022, 21(12): 10515–10528. doi: 10.1109/twc.2022.3184953.
|
[38] |
赵川斌, 罗宏亮, 高飞飞. 基站对低空无人机通感算一体化应用组网研究[J]. 移动通信, 2024, 48(9): 57–63,70. doi: 10.3969/j.issn.1006-1010.20240511-0001.
ZHAO Chuanbin, LUO Hongliang, and GAO Feifei. Integrated sensing, communication, and computing for low-altitude UAV networks: A base station-centric approach[J]. Mobile Communications, 2024, 48(9): 57–63,70. doi: 10.3969/j.issn.1006-1010.20240511-0001.
|
[39] |
柳学斌, 李翰山. 基于数据分析算法的多目标覆盖无人机网络布局方法研究[J]. 激光与红外, 2023, 53(9): 1388–1392. doi: 10.3969/j.issn.1001-5078.2023.09.013.
LIU Xuebin and LI Hanshan. Research on multi-target coverage UAV network layout method based on data analysis algorithm[J]. Laser & Infrared, 2023, 53(9): 1388–1392. doi: 10.3969/j.issn.1001-5078.2023.09.013.
|
[40] |
LU Xi, WEI Zhiqing, XU Ruizhong, et al. Integrated sensing and communication enabled multiple base stations cooperative UAV detection[C]. 2024 IEEE International Conference on Communications Workshops (ICC Workshops), Denver, USA, 2024: 1882–1887. doi: 10.1109/iccworkshops59551.2024.10615952.
|
[41] |
WEI Zhiqing, XU Ruizhong, FENG Zhiyong, et al. Symbol-level integrated sensing and communication enabled multiple base stations cooperative sensing[J]. IEEE Transactions on Vehicular Technology, 2024, 73(1): 724–738. doi: 10.1109/tvt.2023.3304856.
|
[42] |
XIE Zhanyuan, WANG Ziyuan, ZHANG Zekai, et al. Distributed UAV swarm for device-free integrated sensing and communication relying on multi-agent reinforcement learning[J]. IEEE Transactions on Vehicular Technology, 2024, 73(12): 19925–19930. doi: 10.1109/tvt.2024.3438854.
|
[43] |
ZHANG Yinan, WANG Guangxue, PENG Shirui, et al. Near-field beamforming algorithms for UAVs[J]. Sensors, 2023, 23(13): 6172. doi: 10.3390/s23136172.
|
[44] |
ZHU Botao, BEDEER E, NGUYEN H H, et al. UAV trajectory planning in wireless sensor networks for energy consumption minimization by deep reinforcement learning[J]. IEEE Transactions on Vehicular Technology, 2021, 70(9): 9540–9554. doi: 10.1109/tvt.2021.3102161.
|
[45] |
ZHANG Ruizhi, ZHANG Ying, TANG Rui, et al. A joint UAV trajectory, user association, and beamforming design strategy for multi-UAV-assisted ISAC systems[J]. IEEE Internet of Things Journal, 2024, 11(18): 29360–29374. doi: 10.1109/JIOT.2024.3430390.
|
[46] |
LUO Jihao, FEI Zesong, WANG Xinyi, et al. GNN-based resource allocation for digital twin-enhanced multi-UAV radar networks[J]. IEEE Wireless Communications Letters, 2024, 13(11): 3137–3141. doi: 10.1109/lwc.2024.3456247.
|
[47] |
YANG Xiaoyu, WEI Zhiqing, LIU Yuanwei, et al. RIS-assisted cooperative multicell ISAC systems: A multi-user and multi-target case[J]. IEEE Transactions on Wireless Communications, 2024, 23(8): 8683–8699. doi: 10.1109/twc.2024.3353336.
|
[48] |
XIAO Meng, CUI Huanxi, ZHAO Zhongliang, et al. Joint 3D deployment and beamforming for RSMA-enabled UAV base station with geographic information[J]. IEEE Transactions on Wireless Communications, 2024, 23(4): 2547–2559. doi: 10.1109/twc.2023.3299650.
|