Citation: | ZHAO Chuanbin, SUN Hong, ZHANG Tengyu, LUO Hongliang, WANG Yucong, JIANG Yuhua, LIN Bo, GAO Feifei. Integrated Sensing and Communications Framework for 6G: Key Technologies and Hardware Prototype Validation[J]. Journal of Electronics & Information Technology, 2025, 47(4): 932-947. doi: 10.11999/JEIT241114 |
[1] |
尹浩, 黄宇红, 韩林丛, 等. 6G通信-感知-计算融合网络的思考[J]. 中国科学: 信息科学, 2023, 53(9): 1838–1842. doi: 10.1360/SSI-2023-0135.
YIN Hao, HUANG Yuhong, HAN Lincong, et al. Thoughts on 6G integrated communication, sensing and computing networks[J]. Scientia Sinica Informationis, 2023, 53(9): 1838–1842. doi: 10.1360/SSI-2023-0135.
|
[2] |
3GPP. Study on Integrated Sensing and Communication (Release 19)[R]. TR 22.837, 2023.
|
[3] |
LIU Wancun, ZHANG Liguo, ZHANG Xiaolin, et al. 3D snow sculpture reconstruction based on structured-light 3D vision measurement[J]. Applied Sciences, 2021, 11(8): 3324. doi: 10.3390/APP11083324.
|
[4] |
CHOY C B, XU Danfei, GWAK J Y, et al. 3D-R2N2: A unified approach for single and multi-view 3D object reconstruction[C]. The 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 628–644. doi: 10.1007/978-3-319-46484-8_38.
|
[5] |
WANG Qiaozhi, YUAN Xiaojun, XU Chongbin, et al. A Bayesian approach to communication-driven SLAM based on diffuse reflection model[J]. IEEE Wireless Communications Letters, 2023, 12(7): 1279–1283. doi: 10.1109/LWC.2023.3271321.
|
[6] |
LEITINGER E, GREBIEN S, LI Xuhong, et al. On the use of MPC amplitude information in radio signal based slam[C]. 2018 IEEE Statistical Signal Processing Workshop, Freiburg im Breisgau, Germany, 2018: 633–637. doi: 10.1109/SSP.2018.8450734.
|
[7] |
YANG Jie, WEN Chaokai, XU Jing, et al. Angle-based SLAM on 5G mmWave systems: Design, implementation, and measurement[J]. IEEE Internet of Things Journal, 2023, 10(20): 17755–17771. doi: 10.1109/JIOT.2023.3279287.
|
[8] |
QUE Hang, YANG Jie, WEN Chaokai, et al. Joint beam management and SLAM for mmWave communication systems[J]. IEEE Transactions on Communications, 2023, 71(10): 6162–6179. doi: 10.1109/TCOMM.2023.3294954.
|
[9] |
YANG Jie, WEN Chaokai, JIN Shi, et al. Enabling plug-and-play and crowdsourcing SLAM in wireless communication systems[J]. IEEE Transactions on Wireless Communications, 2022, 21(3): 1453–1468. doi: 10.1109/TWC.2021.3104006.
|
[10] |
BARNETO C B, RIIHONEN T, LIYANAARACHCHI S D, et al. Beamformer design and optimization for joint communication and full-duplex sensing at mm-waves[J]. IEEE Transactions on Communications, 2022, 70(12): 8298–8312. doi: 10.1109/TCOMM.2022.3218623.
|
[11] |
WANG Xinyi, FEI Zesong, ZHANG J A, et al. Partially-connected hybrid beamforming design for integrated sensing and communication systems[J]. IEEE Transactions on Communications, 2022, 70(10): 6648–6660. doi: 10.1109/TCOMM.2022.3202215.
|
[12] |
DU Zhen, ZHANG Zenghui, and YU Wenxian. Distributed target detection in communication interference and noise using OFDM radar[J]. IEEE Communications Letters, 2021, 25(2): 598–602. doi: 10.1109/LCOMM.2020.3026346.
|
[13] |
WANG Shuaihu, SHEN Hong, XU Wei, et al. Clutter-aware MIMO-OFDM based target detection: Algorithm design and experimental test[C]. 2023 International Conference on Wireless Communications and Signal Processing, Hangzhou, China, 2023: 402–407. doi: 10.1109/WCSP58612.2023.10404794.
|
[14] |
ARGYRIOU A. False target detection in OFDM-based joint RADAR-communication systems[C]. 2023 IEEE Radar Conference, San Antonio, USA, 2023: 1–6. doi: 10.1109/RadarConf2351548.2023.10149610.
|
[15] |
STURM C and WIESBECK W. Waveform design and signal processing aspects for fusion of wireless communications and radar sensing[J]. Proceedings of the IEEE, 2011, 99(7): 1236–1259. doi: 10.1109/JPROC.2011.2131110.
|
[16] |
CHEN Xu, FENG Zhiyong, WEI Zhiqing, et al. Code-division OFDM joint communication and sensing system for 6G machine-type communication[J]. IEEE Internet of Things Journal, 2021, 8(15): 12093–12105. doi: 10.1109/JIOT.2021.3060858.
|
[17] |
WEI Zhiqing, QU Hanyang, JIANG Wangjun, et al. Iterative signal processing for integrated sensing and communication systems[J]. IEEE Transactions on Green Communications and Networking, 2023, 7(1): 401–412. doi: 10.1109/TGCN.2023.3234825.
|
[18] |
CHEN Xu, FENG Zhiyong, WEI Zhiqing, et al. Multiple signal classification based joint communication and sensing system[J]. IEEE Transactions on Wireless Communications, 2023, 22(10): 6504–6517. doi: 10.1109/TWC.2023.3244195.
|
[19] |
XIANG Yang, GAO Yuxing, YANG Xinru, et al. An ESPRIT-based moving target sensing method for MIMO-OFDM ISAC systems[J]. IEEE Communications Letters, 2023, 27(12): 3205–3209. doi: 10.1109/LCOMM.2023.3325531.
|
[20] |
LIU Fan, YUAN Weijie, MASOUROS C, et al. Radar-assisted predictive beamforming for vehicular links: Communication served by sensing[J]. IEEE Transactions on Wireless Communications, 2020, 19(11): 7704–7719. doi: 10.1109/TWC.2020.3015735.
|
[21] |
DU Zhen, LIU Fan, YUAN Weijie, et al. Integrated sensing and communications for V2I networks: Dynamic predictive beamforming for extended vehicle targets[J]. IEEE Transactions on Wireless Communications, 2023, 22(6): 3612–3627. doi: 10.1109/TWC.2022.3219890.
|
[22] |
HAN Zixiang, DING Haiyu, ZHANG Xiaozhou, et al. Multistatic integrated sensing and communication system in cellular networks[C]. 2023 IEEE Globecom Workshops, Kuala Lumpur, Malaysia, 2023: 123–128. DOI: 10.1109/GCWkshps58843.2023.10464728.
|
[23] |
BAUHOFER M, MANDELLI S, HENNINGER M, et al. Multi-target localization in multi-static integrated sensing and communication deployments[C]. The 2nd International Conference on 6G Networkin, Paris, France, 2023: 1–4. DOI: 10.1109/6GNet58894.2023.10317749.
|
[24] |
GROßMANN W, HORN H, and NIGGEMANN O. Improving remote material classification ability with thermal imagery[J]. Scientific Reports, 2022, 12(1): 17288. doi: 10.1038/S41598-022-21588-4.
|
[25] |
MILLER J L. Principles of Infrared Technology[M]. New York: Springer, 1994.
|
[26] |
ALKHATEEB A, JIANG Shuaifeng, and CHARAN G. Real-time digital twins: Vision and research directions for 6G and beyond[J]. IEEE Communications Magazine, 2023, 61(11): 128–134. doi: 10.1109/MCOM.001.2200866.
|
[27] |
CUI Yuanhao, YUAN Weijie, ZHANG Zhiyue, et al. On the physical layer of digital twin: An integrated sensing and communications perspective[J]. IEEE Journal on Selected Areas in Communications, 2023, 41(11): 3474–3490. doi: 10.1109/JSAC.2023.3314826.
|
[28] |
KUMARI P, MEZGHANI A, and HEATH R W. JCR70: A low-complexity millimeter-wave proof-of-concept platform for a fully-digital SIMO joint communication-radar[J]. IEEE Open Journal of Vehicular Technology, 2021, 2: 218–234. doi: 10.1109/OJVT.2021.3069946.
|
[29] |
LI Oupeng, HE Jia, ZENG Kun, et al. Integrated sensing and communication in 6G A prototype of high resolution THz sensing on portable device[C]. 2021 Joint European Conference on Networks and Communications & 6G Summit, Porto, Portugal, 2021: 544–549. DOI: 10.1109/EuCNC/6GSummit51104.2021.9482537.
|
[30] |
LI Jie, YU Chao, LUO Yan, et al. Passive motion detection via mmWave communication system[C]. 2022 IEEE 95th Vehicular Technology Conference, Helsinki, Finland, 2022: 1–6. DOI: 10.1109/VTC2022-Spring54318.2022.9860809.
|
[31] |
BARNETO C B, RASTORGUEVA-FOI E, KESKIN M F, et al. Millimeter-wave mobile sensing and environment mapping: Models, algorithms and validation[J]. IEEE Transactions on Vehicular Technology, 2022, 71(4): 3900–3916. doi: 10.1109/TVT.2022.3146003.
|
[32] |
BARNETO C B, RIIHONEN T, TURUNEN M, et al. Radio-based sensing and indoor mapping with millimeter-wave 5G NR signals[C]. Proceedings of 2020 International Conference on Localization and GNSS, Tampere, Finland, 2020: 1–5. doi: 10.1109/ICL-GNSS49876.2020.9115568.
|
[33] |
GUIDI F, MARIANI A, GUERRA A, et al. Indoor environment-adaptive mapping with beamsteering massive arrays[J]. IEEE Transactions on Vehicular Technology, 2018, 67(10): 10139–10143. doi: 10.1109/TVT.2018.2853657.
|
[34] |
GUIDI F, GUERRA A, and DARDARI D. Millimeter-wave massive arrays for indoor SLAM[C]. Proceedings of 2014 IEEE International Conference on Communications Workshops, Sydney, Australia, 2014: 114–120. doi: 10.1109/ICCW.2014.6881182.
|
[35] |
GUIDI F, GUERRA A, and DARDARI D. Personal mobile radars with millimeter-wave massive arrays for indoor mapping[J]. IEEE Transactions on Mobile Computing, 2016, 15(6): 1471–1484. doi: 10.1109/TMC.2015.2467373.
|
[36] |
GUIDI F, GUERRA A, DARDARI D, et al. Environment mapping with millimeter-wave massive arrays: System design and performance[C]. Proceedings of 2016 IEEE Globecom Workshops, Washington, USA, 2016: 1–6. DOI: 10.1109/GLOCOMW.2016.7848895.
|
[37] |
LOTTI M, PASOLINI G, GUERRA A, et al. Radio SLAM for 6G systems at THz frequencies: Design and experimental validation[J]. IEEE Journal of Selected Topics in Signal Processing, 2023, 17(4): 834–849. doi: 10.1109/JSTSP.2023.3285101.
|
[38] |
YIN Mingsheng, VELDANDA A K, TRIVEDI A, et al. Millimeter wave wireless assisted robot navigation with link state classification[J]. IEEE Open Journal of the Communications Society, 2022, 3: 493–507. doi: 10.1109/OJCOMS.2022.3155572.
|
[39] |
MOU Zhiyu and GAO Feifei. Millimeter wave wireless communication assisted three-dimensional simultaneous localization and mapping[J]. arXiv: 2303.02617, 2023.
|
[40] |
PALACIOS J, BIELSA G, CASARI P, et al. Communication-driven localization and mapping for millimeter wave networks[C]. Proceedings of the IEEE INFOCOM 2018 - IEEE Conference on Computer Communications, Honolulu, USA, 2018: 2402–2410. doi: 10.1109/INFOCOM.2018.8485819.
|
[41] |
PALACIOS J, CASARI P, and WIDMER J. JADE: Zero-knowledge device localization and environment mapping for millimeter wave systems[C]. Proceedings of the IEEE INFOCOM 2017 - IEEE Conference on Computer Communications, Atlanta, USA, 2017: 1–9. doi: 10.1109/INFOCOM.2017.8057183.
|