Citation: | NIE Wei, ZHANG Zhongyang, YANG Xiaolong, ZHOU Mu. Unmanned Aerial Vehicles Detection and Recognition Method Based on Mel Frequency Cepstral Coefficients[J]. Journal of Electronics & Information Technology, 2025, 47(4): 1076-1084. doi: 10.11999/JEIT241111 |
[1] |
DING Siyi, GUO Xiao, PENG Ti, et al. Drone detection and tracking system based on fused acoustical and optical approaches[J]. Advanced Intelligent Systems, 2023, 5(10): 2300251. doi: 10.1002/aisy.202300251.
|
[2] |
MAKSYMIUK R, PŁOTKA M, ABRATKIEWICZ K, et al. 5G network-based passive radar for drone detection[C]. Proceedings of 2023 24th International Radar Symposium (IRS), Berlin, Germany, 2023: 1–10. doi: 10.23919/IRS57608.2023.10172437.
|
[3] |
ZHANG Junqing, WOODS R, SANDELL M, et al. Radio frequency fingerprint identification for narrowband systems, modelling and classification[J]. IEEE Transactions on Information Forensics and Security, 2021, 16: 3974–3987. doi: 10.1109/TIFS.2021.3088008.
|
[4] |
HE Jiashuo, HUANG Sai, YANG Zheng, et al. Channel-agnostic radio frequency fingerprint identification using spectral quotient constellation errors[J]. IEEE Transactions on Wireless Communications, 2024, 23(1): 158–170. doi: 10.1109/TWC.2023.3276519.
|
[5] |
LI Dingzhao, QI Jie, HONG Shaohua, et al. A class-incremental approach with self-training and prototype augmentation for specific emitter identification[J]. IEEE Transactions on Information Forensics and Security, 2024, 19: 1714–1727. doi: 10.1109/TIFS.2023.3343193.
|
[6] |
GU Xiaolin, WU Wenjia, ZHOU Yusen, et al. TEA-RFFI: Temperature adjusted radio frequency fingerprint-based smartphone identification[J]. Computer Networks, 2024, 238: 110115. doi: 10.1016/j.comnet.2023.110115.
|
[7] |
张晔. 基于深度学习的射频指纹识别系统设计与实现[D]. [硕士论文], 中国科学院大学(中国科学院国家空间科学中心), 2021. doi: 10.27562/d.cnki.gkyyz.2021.000024.
ZHANG Ye. Design and implementation of radio frequency fingerprint identification system based on deep learning[D]. [Master dissertation], University of Chinese of Academy of Science (National Space Science Center, Chinese Academy of Sciences), 2021. doi: 10.27562/d.cnki.gkyyz.2021.000024.
|
[8] |
王检, 张邦宁, 魏国峰, 等. 基于Welch功率谱和卷积神经网络的通信辐射源个体识别[J]. 电讯技术, 2021, 61(10): 1197–1204. doi: 10.3969/j.issn.1001-893x.2021.10.001.
WANG Jian, ZHANG Bangning, WEI Guofeng, et al. Communication transmitter individual identification based on Welch power spectrum and convolution neural network[J]. Telecommunication Engineering, 2021, 61(10): 1197–1204. doi: 10.3969/j.issn.1001-893x.2021.10.001.
|
[9] |
YANG K, KANG J, JANG J, et al. Multimodal sparse representation-based classification scheme for RF fingerprinting[J]. IEEE Communications Letters, 2019, 23(5): 867–870. doi: 10.1109/LCOMM.2019.2905205.
|
[10] |
LIN Yun, TU Ya, DOU Zheng, et al. Contour Stella image and deep learning for signal recognition in the physical layer[J]. IEEE Transactions on Cognitive Communications and Networking, 2021, 7(1): 34–46. doi: 10.1109/TCCN.2020.3024610.
|
[11] |
凌逆战. 梅尔倒谱系数(MFCC)的原理讲解及python实现[EB/OL]. https://www.cnblogs.com/LXP-Never/p/10918590.html, 2024.
LING Nizhan. Explanation of the principle and python implementation of the Mel Frequency Cepstral Coefficients (MFCC)[EB/OL]. https://www.cnblogs.com/LXP-Never/p/10918590.html, 2024.
|
[12] |
张亚楠. 语音信号处理基础(十一)——梅尔倒谱系数的提取[EB/OL]. https://blog.csdn.net/qq_40644291/article/details/104417894, 2024.
ZHANG Yanan. Fundamentals of speech signal processing (XI) - extraction of Mel frequency cepstral coefficients[EB/OL]. https://blog.csdn.net/qq_40644291/article/details/104417894, 2024.
|
[13] |
何正祥, 彭平安, 廖智勤. 基于梅尔倒谱系数的矿山复杂微震信号自动识别分类方法[J]. 中国安全生产科学技术, 2018, 14(12): 41–47. doi: 10.11731/j.issn.1673-193x.2018.12.006.
HE Zhengxiang, PENG Pingan, and LIAO Zhiqin. An automatic identification and classification method of complex microseismic signals in mines based on Mel-frequency cepstral coefficients[J]. Journal of Safety Science and Technology, 2018, 14(12): 41–47. doi: 10.11731/j.issn.1673-193x.2018.12.006.
|
[14] |
CHO K, VAN MERRIENBOER B, BAHDANAU D, et al. On the properties of neural machine translation: Encoder-Decoder approaches[C]. SSST-8, Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation, Doha, Qatar, 2014: 103–111. doi: 10.3115/v1/W14-4012.
|
[15] |
生瓜蛋子. 深度探索: 机器学习门控循环单元(GRU)算法原理及其应用[EB/OL]. https://blog.csdn.net/qq_51320133/article/details/137629302, 2024.
Raw Melon Eggs. Deep exploration: Principles of the machine learning gated recurrent unit (GRU) algorithm and its applications[EB/OL]. https://blog.csdn.net/qq_51320133/article/details/137629302, 2024.
|
[16] |
COLAH. Understanding LSTM networks[EB/OL]. http://colah.github.io/posts/2015-08-Understanding-LSTMs/, 2015.
|
[17] |
NEEDELL D and VERSHYNIN R. Greedy signal recovery and un-certainty principles[C]. The Conference on Computational Imaging, San Jose, USA, 2008: 68140J. doi: 10.1117/12.776996.
|
[18] |
NEEDELL D and VERSHYNIN R. Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit[J]. Foundations of Computational Mathematics, 2009, 9(3): 317–334. doi: 10.1007/s10208-008-9031-3.
|