Citation: | FANG Sheng, ZHU Qiuming, XIE Yuetian, JIANG Hao, LI Hui, WU Qihui, MAO Kai, HUA Boyu. Advances and Challenges in Wireless Channel Hardware Twin[J]. Journal of Electronics & Information Technology, 2025, 47(8): 2416-2428. doi: 10.11999/JEIT241093 |
[1] |
LIU Ting, GUAN Ke, HE Danping, et al. 6G integrated sensing and communications channel modeling: Challenges and opportunities[J]. IEEE Vehicular Technology Magazine, 2024, 19(2): 31–40. doi: 10.1109/MVT.2024.3373930.
|
[2] |
WANG Heng, ZHANG Jianhua, NIE Gaofeng, et al. Digital twin channel for 6G: Concepts, architectures and potential applications[J]. IEEE Communications Magazine, 2025, 63(3): 24–30. doi: 10.1109/MCOM.001.2400213.
|
[3] |
LI Junling, WANG Chengxiang, HUANG Chen, et al. Digital twin online channel modeling: Challenges, principles, and applications[J]. IEEE Vehicular Technology Magazine, 2025, 20(1): 94–103. doi: 10.1109/MVT.2025.3527729.
|
[4] |
KIHERO A B, KARABACAK M, and ARSLAN H. Emulation techniques for small scale fading aspects by using reverberation chamber[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(2): 1246–1258. doi: 10.1109/TAP.2018.2883571.
|
[5] |
HATA M and NAGATSU T. Mobile location using signal strength measurements in a cellular system[J]. IEEE Transactions on Vehicular Technology, 1980, 29(2): 245–252. doi: 10.1109/T-VT.1980.23848.
|
[6] |
FAILLI M. Digital land mobile radio communications[EB/OL]. https://op.europa.eu/en/publication-detail/-/publication/61fc77e7-bca2-4229-8eb4-77741f0d2ab2, 1989.
|
[7] |
PODDAR H, JU Shihao, SHAKYA D, et al. A tutorial on NYUSIM: Sub-terahertz and millimeter-wave channel simulator for 5G, 6G, and beyond[J]. IEEE Communications Surveys & Tutorials, 2024, 26(2): 824–857. doi: 10.1109/COMST.2023.3344671.
|
[8] |
FRAUNHOFER HHI. QuaDRiGa channel model[EB/OL]. https://quadriga-channel-model.de, 2023.
|
[9] |
TARBOUSH S, SARIEDDEEN H, CHEN Hui, et al. TeraMIMO: A channel simulator for wideband ultra-massive MIMO terahertz communications[J]. IEEE Transactions on Vehicular Technology, 2021, 70(12): 12325–12341. doi: 10.1109/TVT.2021.3123131.
|
[10] |
BELZARENA P. PyWiCh: Python wireless channel simulator[C]. 2022 IEEE Latin-American Conference on Communications, Rio de Janeiro, Brazil, 2022: 1–6. doi: 10.1109/LATINCOM56090.2022.10000470.
|
[11] |
ALKHATEEB A. DeepMIMO: A generic deep learning dataset for millimeter wave and massive MIMO applications[EB/OL]. https://arxiv.org/abs/1902.06435, 2019.
|
[12] |
BUPT-ARTT Lab, IMT-2030 THz channel model platform[EB/OL]. http://www.zjhlab.net/publications/buptcmg-imt2030_thz-channel-model-platform, 2023.
|
[13] |
BJTU APC Lab, CloudRT ray-tracing simulation platform[EB/OL]. http://www.raytracer.cloud/, 2021.
|
[14] |
WANG Chengxiang, LV Zhen, CHEN Yunfei, et al. A complete study of space-time-frequency statistical properties of the 6G pervasive channel model[J]. IEEE Transactions on Communications, 2023, 71(12): 7273–7287. doi: 10.1109/TCOMM.2023.3307144.
|
[15] |
BONATI L, JOHARI P, POLESE M, et al. Colosseum: Large-scale wireless experimentation through hardware-in-the-loop network emulation[C]. 2021 IEEE International Symposium on Dynamic Spectrum Access Networks, Los Angeles, USA, 2021: 105–113. doi: 10.1109/DySPAN53946.2021.9677430.
|
[16] |
DAKIĆ A, RAINER B, HOFER M, et al. Hardware-in-the-loop framework for testing wireless V2X communication[C]. 2023 IEEE Wireless Communications and Networking Conference, Glasgow, UK, 2023: 1–6. doi: 10.1109/WCNC55385.2023.10118673.
|
[17] |
ZHU Qiuming, ZHAO Zikun, MAO Kai, et al. A real-time hardware emulator for 3D non-stationary U2V channels[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2021, 68(9): 3951–3964. doi: 10.1109/TCSI.2021.3087777.
|
[18] |
KEYSIGHT Technologies. F8800A PROPSIM F64 channel emulator[EB/OL]. https://www.keysight.com/us/en/product/F8800A, 2023.
|
[19] |
坤恒顺维. KSW-WNS04无线信道仿真仪[EB/OL]. https://www.ksw-tech.com/products/ksw-wns04-wireless-channel-simulator.html, 2024.
KSW Technologies Co. ,Ltd. KSW-WNS04 Wireless Channel Simulator[EB/OL]. https://www.ksw-tech.com/products/ksw-wns04-wireless-channel-simulator.html, 2024.
|
[20] |
Spirent Communications. Spirent vertex channel emulator[EB/OL]. https://www.spirent.com/assets/u/spirent_vertex_channel_emulator_datasheet, 2024.
|
[21] |
ROHDE&SCHWARZ. R&S®SMW200A vector signal generator[EB/OL]. https://www.rohde-schwarz.com/us/products/test-and-measurement/vector-signal-generators/rs-smw200a-vector-signal-generator_63493-38656.html, 2024.
|
[22] |
JI Yilin and FAN Wei. Enabling high-fidelity ultra-wideband radio channel emulation: Band-stitching and digital predistortion concepts[J]. IEEE Open Journal of Antennas and Propagation, 2022, 3: 932–939. doi: 10.1109/OJAP.2022.3198287.
|
[23] |
GHOSH A and KIM M. THz channel sounding and modeling techniques: An overview[J]. IEEE Access, 2023, 11: 17823–17856. doi: 10.1109/ACCESS.2023.3246161.
|
[24] |
FAN Wei, KYÖSTI P, HENTILÄ L, et al. A flexible millimeter-wave radio channel emulator design with experimental validations[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(11): 6446–6451. doi: 10.1109/TAP.2018.2864339.
|
[25] |
CAO Jue, TILA F, and NIX A. Design and implementation of a wideband channel emulation platform for 5G mmWave vehicular communication[J]. IET Communications, 2020, 14(14): 2369–2376. doi: 10.1049/iet-com.2019.1016.
|
[26] |
JI Yilin, FAN Wei, and PEDERSEN G. Wideband radio channel emulation using band-stitching schemes[C]. 2020 14th European Conference on Antennas and Propagation, Copenhagen, Denmark, 2020: 1–5. doi: 10.23919/EuCAP48036.2020.9135788.
|
[27] |
ZHANG Fengchun, BENGTSON M F, KYÖSTI P, et al. Dynamic sub-THZ radio channel emulation: Principle, challenges, and experimental validation[J]. IEEE Wireless Communications, 2024, 31(1): 10–16. doi: 10.1109/MWC.001.2300286.
|
[28] |
FENG Ruirui, MAO Kai, ZHU Qiuming, et al. Real-time hardware emulation of frequency non-stationary UWB channels with continuous frequency response[C]. 2022 IEEE 22nd International Conference on Communication Technology, Nanjing, China, 2022: 999–1003. doi: 10.1109/ICCT56141.2022.10072872.
|
[29] |
朱秋明, 倪浩然, 华博宇, 等. 无人机毫米波信道测量与建模研究综述[J]. 移动通信, 2022, 46(12): 1–11. doi: 10.3969/j.issn.1006-1010.20221114-0001.
ZHU Qiuming, NI Haoran, HUA Boyu, et al. A survey of UAV millimeter-wave channel measurement and modeling[J]. Mobile Communications, 2022, 46(12): 1–11. doi: 10.3969/j.issn.1006-1010.20221114-0001.
|
[30] |
张在琛, 江浩. 智能超表面使能无人机高能效通信信道建模与传输机理分析[J]. 电子学报, 2023, 51(10): 2623–2634. doi: 10.12263/DZXB.20221352.
ZHANG Zaichen and JIANG Hao. Channel modeling and characteristics analysis for high energy-efficient RIS-Assisted UAV communications[J]. Acta Electronica Sinica, 2023, 51(10): 2623–2634. doi: 10.12263/DZXB.20221352.
|
[31] |
MAO Kai, ZHU Qiuming, WANG Chengxiang, et al. A survey on channel sounding technologies and measurements for UAV-assisted communications[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 8004624. doi: 10.1109/TIM.2024.3436128.
|
[32] |
HOFER M, XU Zhinan, VLASTARAS D, et al. Validation of a real-time geometry-based stochastic channel model for vehicular scenarios[C]. 2018 IEEE 87th Vehicular Technology Conference, Porto, Portugal, 2018: 1–5. doi: 10.1109/VTCSpring.2018.8417476.
|
[33] |
ZHU Qiuming, LIU Xinglin, YIN Xuefeng, et al. A novel simulator of nonstationary random MIMO channels in Rayleigh fading scenarios[J]. International Journal of Antennas and Propagation, 2016, 2016: 3492591. doi: 10.1155/2016/3492591.
|
[34] |
李浩, 朱秋明, 陈应兵, 等. 非平稳信道衰落FPGA实时模拟方法[J]. 信号处理, 2018, 34(3): 368–375. doi: 10.16798/j.issn.1003-0530.2018.03.014.
LI Hao, ZHU Qiuming, CHEN Yingbing, et al. A real-time FPGA-based emulation method for no-stationary channel fading[J]. Journal of Signal Processing, 2018, 34(3): 368–375. doi: 10.16798/j.issn.1003-0530.2018.03.014.
|
[35] |
CHAUDHARI A, SQUIRES D, and TILGHMAN P. Colosseum: A battleground for AI let loose on the RF spectrum[J]. Microwave Journal, 2018, 61(9): 22–36.
|
[36] |
HUANG Pengda, TONNEMACHER M J, DU Yongjiu, et al. Towards massive MIMO channel emulation: Channel accuracy versus implementation resources[J]. IEEE Transactions on Vehicular Technology, 2020, 69(5): 4635–4651. doi: 10.1109/TVT.2020.2980583.
|
[37] |
HUANG Duoxian, XIN Lijian, HUANG Jie, et al. Adaptive non-stationary vehicle-to-vehicle MIMO channel simulator and emulator[C]. 2023 IEEE Wireless Communications and Networking Conference, Glasgow, UK, 2023: 1–6. doi: 10.1109/WCNC55385.2023.10119045.
|
[38] |
VAN TIEN T, TIEN T M, and KHAI L D. Hardware implementation of a MIMO channel emulator for high speed WLAN 802.11 ac[C]. 2018 5th NAFOSTED Conference on Information and Computer Science, Ho Chi Minh City, Vietnam, 2018: 183–188. doi: 10.1109/NICS.2018.8606847.
|
[39] |
FANG Sheng, MAO Tongbao, HUA Boyu, et al. A scalable spatial–temporal correlated non-stationary channel fading generation method[J]. Electronics, 2023, 12(19): 4132. doi: 10.3390/electronics12194132.
|
[40] |
CHEN Yanning, LIU Fang, GAO Jie, et al. Research on electromagnetic environment characteristic acquisition system for industrial chips[J]. Electronics, 2024, 13(10): 1963. doi: 10.3390/electronics13101963.
|
[41] |
XU Yuan, WU Jintie, LIANG Wei, et al. The development of high performance GNSS RF record & playback system[C]. 2017 International Workshop on Electromagnetics: Applications and Student Innovation Competition, London, UK, 2017: 74–78. doi: 10.1109/iWEM.2017.7968789.
|
[42] |
CONSOLI A and YOSSEF Y B. High precision record & playback system for the analysis of wide-band GNSS signals[C]. 2019 European Navigation Conference, Warsaw, Poland, 2019: 1–5. doi: 10.1109/EURONAV.2019.8714139.
|
[43] |
ZHAO Yingxiao, SU Yang, HUANG Rui, et al. Design and implementation of a radar waveform playback system for real-time digital signal processing test[C]. 2017 Sixth Asia-Pacific Conference on Antennas and Propagation, Xi'an, China, 2017: 1–3. doi: 10.1109/APCAP.2017.8420895.
|
[44] |
MATHUR N and LAKSHMI B. High throughput arbitrary sample rate converter for software radios[C]. 2014 International Conference on Control, Instrumentation, Communication and Computational Technologies, Kanyakumari, India, 2014: 1121–1123. doi: 10.1109/ICCICCT.2014.6993129.
|
[45] |
ZHAO Wenhao, TIAN Shulin, LIU Ke, et al. Low spurious waveform synthesis based on digital resampling[C]. 2021 IEEE 15th International Conference on Electronic Measurement & Instruments, Nanjing, China, 2021: 276–280. doi: 10.1109/ICEMI52946.2021.9679594.
|
[46] |
ZHAO Yingxiao, YOU Hongliang, and ZHANG Yue. An FPGA-based direct sampling and digital processing system for wideband and narrowband radar signal[J]. Journal of Physics: Conference Series, 2020, 1624(3): 032029. doi: 10.1088/1742-6596/1624/3/032029.
|
[47] |
JENSERUD T and OTNES R. Reverberation tail in power delay profiles: Effects and modeling[C]. 2013 MTS/IEEE OCEANS-Bergen, Bergen, Norway, 2013: 1–10. doi: 10.1109/OCEANS-Bergen.2013.6608063.
|
[48] |
SOCHELEAU F X, LAOT C, and PASSERIEUX J M. Parametric replay-based simulation of underwater acoustic communication channels[J]. IEEE Journal of Oceanic Engineering, 2015, 40(4): 796–806. doi: 10.1109/JOE.2015.2458211.
|
[49] |
OTNES R, VAN WALREE P A, and JENSERUD T. Validation of replay-based underwater acoustic communication channel simulation[J]. IEEE Journal of Oceanic Engineering, 2013, 38(4): 689–700. doi: 10.1109/JOE.2013.2262743.
|
[50] |
ISUKAPALLI Y, SONG H C, and HODGKISS W S. Stochastic channel simulator based on local scattering functions[J]. The Journal of the Acoustical Society of America, 2011, 130(4): EL200–EL205. doi: 10.1121/1.3633688.
|
[51] |
SOCHELEAU F X, LAOT C, and PASSERIEUX J M. Stochastic replay of non-WSSUS underwater acoustic communication channels recorded at sea[J]. IEEE Transactions on Signal Processing, 2011, 59(10): 4838–4849. doi: 10.1109/TSP.2011.2160057.
|
[52] |
YANG S, DEANE G B, PREISIG J C, et al. On the reusability of postexperimental field data for underwater acoustic communications R&D[J]. IEEE Journal of Oceanic Engineering, 2019, 44(4): 912–931. doi: 10.1109/JOE.2019.2925921.
|
[53] |
YANG S and SINGER A C. Optimal replay-based channel simulation via dithering methods[C]. 2019 53rd Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, USA, 2019: 957–963. doi: 10.1109/IEEECONF44664.2019.9049034.
|
[54] |
OTNES R, VAN WALREE P A, BUEN H, et al. Underwater acoustic network simulation with lookup tables from physical-layer replay[J]. IEEE Journal of Oceanic Engineering, 2015, 40(4): 822–840. doi: 10.1109/JOE.2015.2471736.
|
[55] |
RUSCA R, RAVIGLIONE F, CASETTI C, et al. Mobile RF scenario design for massive-scale wireless channel emulators[C]. 2023 Joint European Conference on Networks and Communications & 6G Summit, Gothenburg, Sweden, 2023: 675–680. doi: 10.1109/EuCNC/6GSummit58263.2023.10188319.
|
[56] |
VILLA D, TEHRANI-MOAYYED M, ROBINSON C P, et al. Colosseum as a digital twin: Bridging real-world experimentation and wireless network emulation[J]. IEEE Transactions on Mobile Computing, 2024, 23(10): 9150–9166. doi: 10.1109/TMC.2024.3359596.
|
[57] |
GHIAASI G, ASHURY M, VLASTARAS D, et al. Real-time vehicular channel emulator for future conformance tests of wireless ITS modems[C]. 2016 10th European Conference on Antennas and Propagation, Davos, Switzerland, 2016: 1–5. doi: 10.1109/EuCAP.2016.7481226.
|
[58] |
CHAUDHARI A and BRAUN M. A scalable FPGA architecture for flexible, large-scale, real-time RF channel emulation[C]. 2018 13th International Symposium on Reconfigurable Communication-centric Systems-on-Chip, Lille, France, 2018: 1–8. doi: 10.1109/ReCoSoC.2018.8449390.
|
[59] |
ZHOU Shun, OU Gang, and TANG Xiaomei. Satellite navigation multipath channel sparse reconstruction scheme applied in performance evaluation of constellation channel emulation[C]. 2021 13th International Symposium on Antennas, Propagation and EM Theory, Zhuhai, China, 2021: 01–03. doi: 10.1109/ISAPE54070.2021.9753259.
|
[60] |
TEHRANI-MOAYYED M, BONATI L, JOHARI P, et al. Creating RF scenarios for large-scale, real-time wireless channel emulators[C]. 2021 19th Mediterranean Communication and Computer Networking Conference, Ibiza, Spain, 2021: 1–8. doi: 10.1109/MedComNet52149.2021.9501275.
|
[61] |
MBUGUA A W, CHEN Yun, and FAN Wei. On simplification of ray tracing channels in radio channel emulators for device testing[C]. 2021 15th European Conference on Antennas and Propagation, Dusseldorf, Germany, 2021: 1–5. doi: 10.23919/EuCAP51087.2021.9411504.
|
[62] |
MBUGUA A W, CHEN Yun, and FAN Wei. Radio channel emulation for virtual drive testing with site-specific channels[C]. 2022 16th European Conference on Antennas and Propagation, Madrid, Spain, 2022: 1–5. doi: 10.23919/EuCAP53622.2022.9769382.
|
[63] |
MBUGUA A W, CHEN Yun, RASCHKOWSKI L, et al. Efficient preprocessing of site-specific radio channels for virtual drive testing in hardware emulators[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(2): 1787–1799. doi: 10.1109/TAES.2022.3205289.
|
[64] |
GHIAASI G, BLAZEK T, ASHURY M, et al. Real‐time emulation of nonstationary channels in safety‐relevant vehicular scenarios[J]. Wireless Communications and Mobile Computing, 2018, 2018: 2423837. doi: 10.1155/2018/2423837.
|
[65] |
HOFER M, BERNADÓ L, RAINER B, et al. Evaluation of vehicle-in-the-loop tests for wireless V2X communication[C]. 2019 IEEE 90th Vehicular Technology Conference, Honolulu, USA, 2019: 1–5. doi: 10.1109/VTCFall.2019.8891080.
|
[66] |
BARCKLOW D R, BLOCH L E, SWEENEY S W, et al. Radio frequency emulation system for the defense advanced research projects agency spectrum collaboration challenge[J]. Johns Hopkins APL Technical Digest, 2019, 35(1): 69–78.
|
[67] |
KALTENBERGER F, ZEMEN T, and UEBERHUBER C W. Low-complexity geometry-based MIMO channel simulation[J]. EURASIP Journal on Advances in Signal Processing, 2007, 2007: 095281. doi: 10.1155/2007/95281.
|
[68] |
HOFER M, XU Zhinan, VLASTARAS D, et al. Real-time geometry-based wireless channel emulation[J]. IEEE Transactions on Vehicular Technology, 2019, 68(2): 1631–1645. doi: 10.1109/TVT.2018.2888914.
|
[69] |
DAKIĆ A, HOFER M, RAINER B, et al. Real-time vehicular wireless system-level simulation[J]. IEEE Access, 2021, 9: 23202–23217. doi: 10.1109/ACCESS.2021.3055978.
|
[70] |
ZHANG Dongyang, MAO Kai, YANG Yang, et al. Implementation of non-stationary channel emulator based on USRP[C]. 5th International Conference on Machine Learning and Intelligent Communications, Shenzhen, China, 2021, 342: 437–446. doi: 10.1007/978-3-030-66785-6_48.
|
[71] |
黄文清, 李伟东, 郭放, 等. 基于轨迹的车对车无线信道建模及硬件模拟[J]. 电子测量与仪器学报, 2019, 33(8): 55–62. doi: 10.13382/j.jemi.B1902193.
HUANG Wenqing, LI Weidong, GUO Fang, et al. Channel modeling and hardware emulation for the trajectories based vehicle-to-vehicle channels[J]. Journal of Electronic Measurement and Instrumentation, 2019, 33(8): 55–62. doi: 10.13382/j.jemi.B1902193.
|
[72] |
CHEN Y M and CHEN Chuncheng. Design of farrow structured variable fractional delay filter for time-varying LEO communication channel emulator with SRRC communication waveforms[J]. IEEE Access, 2024, 12: 122229–122238. doi: 10.1109/ACCESS.2024.3452496.
|
[73] |
YOUNG D J and BEAULIEU N C. The generation of correlated Rayleigh random variates by inverse discrete Fourier transform[J]. IEEE Transactions on Communications, 2000, 48(7): 1114–1127. doi: 10.1109/26.855519.
|
[74] |
BADDOUR K E and BEAULIEU N C. Autoregressive modeling for fading channel simulation[J]. IEEE Transactions on Wireless Communications, 2005, 4(4): 1650–1662. doi: 10.1109/TWC.2005.850327.
|
[75] |
ALIMOHAMMAD A and COCKBURN B F. A reconfigurable SOS-based Rayleigh fading channel simulator[C]. IEEE Workshop on Signal Processing Systems Design and Implementation, Banff, Canada, 2006: 39–44. doi: 10.1109/SIPS.2006.352552.
|
[76] |
YUAN Yi, WANG Chengxiang, CHENG Xiang, et al. Novel 3D geometry-based stochastic models for non-isotropic MIMO vehicle-to-vehicle channels[J]. IEEE Transactions on Wireless Communications, 2014, 13(1): 298–309. doi: 10.1109/TWC.2013.120313.130434.
|
[77] |
GUTIÉRREZ C A and PATZOLD M. The design of sum-of-cisoids Rayleigh fading channel simulators assuming non-isotropic scattering conditions[J]. IEEE Transactions on Wireless Communications, 2010, 9(4): 1308–1314. doi: 10.1109/TWC.2010.04.091198.
|
[78] |
WANG Weimin, WANG Heng, WU Yongle, et al. Novel deterministic angular sampling methods for 3D channel models[J]. IEEE Communications Letters, 2021, 25(6): 1756–1760. doi: 10.1109/LCOMM.2021.3061735.
|
[79] |
ZHU Qiuming, HUANG Wei, MAO Kai, et al. A flexible FPGA-based channel emulator for non-stationary MIMO fading channels[J]. Applied Sciences, 2020, 10(12): 4161. doi: 10.3390/app10124161.
|
[80] |
LIU Xinglin, ZHU Qiuming, CHEN Xiaomin, et al. A new simulation model for non-stationary fading channel[C]. 2016 3rd International Conference on Electronic Design, Phuket, Thailand, 2016: 66–69. doi: 10.1109/ICED.2016.7804608.
|
[81] |
ZHU Qiuming, LI Hao, FU Yu, et al. A novel 3D non-stationary wireless MIMO channel simulator and hardware emulator[J]. IEEE Transactions on Communications, 2018, 66(9): 3865–3878. doi: 10.1109/TCOMM.2018.2824817.
|
[82] |
GUTIÉRREZ C A and PÄTZOLD M. The generalized method of equal areas for the design of sum-of-cisoids simulators for mobile Rayleigh fading channels with arbitrary Doppler spectra[J]. Wireless Communications and Mobile Computing, 2013, 13(10): 951–966. doi: 10.1002/wcm.1154.
|
[83] |
ZHANG Yuxiang, YUAN Zhiqiang, TIAN Lei, et al. A novel random angular sampling method for spatial and temporal channel emulation[J]. IEEE Wireless Communications Letters, 2019, 8(5): 1381–1385. doi: 10.1109/LWC.2019.2918787.
|
[84] |
GUTIÉRREZ C A, FABÍAN-RODRÍGUEZ R A, CASTILLO-SORIA F R, et al. SOC-based simulation of 3D MIMO mobile-to-mobile fading channels: A Riemann sum approach[J]. IEEE Open Journal of Vehicular Technology, 2024, 5: 1–20. doi: 10.1109/OJVT.2023.3331534.
|
[85] |
PÄTZOLD M and YOUSSEF N. Modelling and simulation of direction-selective and frequency-selective mobile radio channels[J]. AEU - International Journal of Electronics and Communications, 2001, 55(6): 433–442. doi: 10.1078/1434-8411-54100064.
|
[86] |
DONG Shuli, ZHANG Taotao, and WANG Yan. A real-time simulation design of multi-path fading channel based on SOS method[C]. 2019 IEEE 4th Advanced Information Technology, Electronic and Automation Control Conference, Chengdu, China, 2019: 2550–2554. doi: 10.1109/IAEAC47372.2019.8997884.
|
[87] |
HUANG Duoxian, XIN Lijian, HUANG Jie, et al. A non-stationary channel emulator for 6G THz wireless channels[C]. 2023 International Conference on Wireless Communications and Signal Processing, Hangzhou, China, 2023: 563–568. doi: 10.1109/WCSP58612.2023.10405337.
|
[88] |
ZHAO Zikun, ZHU Qiuming, MAO Kai, et al. An efficient hardware generator for massive non-stationary fading channels[C]. 2020 IEEE Globecom Workshops, Taipei, China, 2020: 1–6. doi: 10.1109/GCWkshps50303.2020.9367588.
|
[89] |
FANG Chen, MAO Kai, FANG Sheng, et al. CORDIC-based general multiple fading generator for wireless channel digital twin[J]. Sensors, 2023, 23(5): 2712. doi: 10.3390/s23052712.
|
[90] |
赵子坤, 房晨, 陈小敏, 等. 面向5G/6G大规模MIMO信道实时模拟研究[J]. 微波学报, 2022, 38(1): 30–35,40. doi: 10.14183/j.cnki.1005-6122.202201007.
ZHAO Zikun, FANG Chen, CHEN Xiaomin, et al. A real-time emulation research on 5G/6G massive MIMO channels[J]. Journal of Microwaves, 2022, 38(1): 30–35,40. doi: 10.14183/j.cnki.1005-6122.202201007.
|
[91] |
YANG Yang, LI Tingpeng, CHEN Xiaomin, et al. Real-time ray-based channel generation and emulation for UAV communications[J]. Chinese Journal of Aeronautics, 2022, 35(9): 106–116. doi: 10.1016/j.cja.2021.12.008.
|
[92] |
PAPALAMPROU I, ARMENIAKOS G, STRATAKOS I, et al. Flexible real-time emulation of fading channels on SoC-FPGA devices[C]. 2024 Panhellenic Conference on Electronics & Telecommunications, Thessaloniki, Greece, 2024: 1–6. doi: 10.1109/PACET60398.2024.10497075.
|
[93] |
XIAO Han, TIAN Wenqiang, LIU Wendong, et al. ChannelGAN: Deep learning-based channel modeling and generating[J]. IEEE Wireless Communications Letters, 2022, 11(3): 650–654. doi: 10.1109/LWC.2021.3140102.
|
[94] |
ALKHATEEB A, JIANG Shuaifeng, and CHARAN G. Real-time digital twins: Vision and research directions for 6G and beyond[J]. IEEE Communications Magazine, 2023, 61(11): 128–134. doi: 10.1109/MCOM.001.2200866.
|
[95] |
MAO Kai, ZHU Qiuming, SONG Maozhong, et al. Machine-learning-based 3-D channel modeling for U2V mmWave communications[J]. IEEE Internet of Things Journal, 2022, 9(18): 17592–17607. doi: 10.1109/JIOT.2022.3155773.
|