Citation: | DU Lan, LI Yiming, XUE Shikun, SHI Yu, CHEN Jian, LI Zhenfang. Millimeter-wave Radar Point Cloud Gait Recognition Method Under Open-set Conditions Based on Similarity Prediction and Automatic Threshold Estimation[J]. Journal of Electronics & Information Technology, 2025, 47(6): 1850-1863. doi: 10.11999/JEIT241034 |
[1] |
SARKAR S, PHILLIPS P J, LIU Z, et al. The HumanID gait challenge problem: Data sets, performance, and analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(2): 162–177. doi: 10.1109/TPAMI.2005.39.
|
[2] |
SEPAS-MOGHADDAM A and ETEMAD A. Deep gait recognition: A survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(1): 264–284. doi: 10.1109/TPAMI.2022.3151865.
|
[3] |
KALE A, SUNDARESAN A, RAJAGOPALAN A N, et al. Identification of humans using gait[J]. IEEE Transactions on Image Processing, 2004, 13(9): 1163–1173. doi: 10.1109/TIP.2004.832865.
|
[4] |
VANDERSMISSEN B, KNUDDE N, JALALVAND A, et al. Indoor person identification using a low-power FMCW radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(7): 3941–3952. doi: 10.1109/TGRS.2018.2816812.
|
[5] |
RICHARDS M A. Fundamentals of Radar Signal Processing[M]. New York: Mcgraw-hill, 2005.
|
[6] |
杜兰, 陈晓阳, 石钰, 等. MMRGait-1.0: 多视角多穿着条件下的雷达时频谱图步态识别数据集[J]. 雷达学报, 2023, 12(4): 892–905. doi: 10.12000/JR22227.
DU Lan, CHEN Xiaoyang, SHI Yu, et al. MMRGait-1.0: A radar time-frequency spectrogram dataset for gait recognition under multi-view and multi-wearing conditions[J]. Journal of Radars, 2023, 12(4): 892–905. doi: 10.12000/JR22227.
|
[7] |
ZHAO Peijun, LU C X, WANG Jianan, et al. mID: Tracking and identifying people with millimeter wave radar[C]. 2019 15th International Conference on Distributed Computing in Sensor Systems (DCOSS), Santorini, Greece, 2019: 33–40. doi: 10.1109/DCOSS.2019.00028.
|
[8] |
MENG Zhen, FU Song, YAN Jie, et al. Gait recognition for co-existing multiple people using millimeter wave sensing[C]. The 34th AAAI Conference on Artificial Intelligence, New York, USA, 2020: 849–856. doi: 10.1609/aaai.v34i01.5430.
|
[9] |
CHENG Yuwei and LIU Yimin. Person reidentification based on automotive radar point clouds[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5101913. doi: 10.1109/TGRS.2021.3073664.
|
[10] |
SCHEIRER W J, DE REZENDE ROCHA A, SAPKOTA A, et al. Toward open set recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(7): 1757–1772. doi: 10.1109/TPAMI.2012.256.
|
[11] |
NI Zhongfei and HUANG Binke. Open-set human identification based on gait radar micro-Doppler signatures[J]. IEEE Sensors Journal, 2021, 21(6): 8226–8233. doi: 10.1109/JSEN.2021.3052613.
|
[12] |
FISHER R A and TIPPETT L H C. Limiting forms of the frequency distribution of the largest or smallest member of a sample[J]. Mathematical Proceedings of the Cambridge Philosophical Society, 1928, 24(2): 180–190. doi: 10.1017/S0305004100015681.
|
[13] |
YANG Yang, GE Yanyan, LI Beichen, et al. Multiscenario open-set gait recognition based on radar micro-Doppler signatures[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 2519813. doi: 10.1109/TIM.2022.3214271.
|
[14] |
MOON J, JUNG J, KANG E, et al. Open set user identification using gait pattern analysis based on ensemble deep neural network[J]. IEEE Sensors Journal, 2022, 22(17): 16975–16984. doi: 10.1109/JSEN.2022.3188527.
|
[15] |
XUE Shikun, DU Lan, SHI Yu, et al. Fine-grained spatial-temporal gait recognition network based on millimeter-wave radar point cloud[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5101316. doi: 10.1109/TGRS.2023.3345829.
|
[16] |
BALKEMA A A and DE HAAN L. Residual life time at great age[J]. The Annals of Probability, 1974, 2(5): 792–804. doi: 10.1214/aop/1176996548.
|
[17] |
ZHANG He and PATEL V M. Sparse representation-based open set recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(8): 1690–1696. doi: 10.1109/TPAMI.2016.2613924.
|
[18] |
LI Yiming, DU Lan, CHEN Jian, et al. An open set recognition for SAR targets based on encoding-conditional decoding network with reject threshold adaptation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024: 1–16. doi: 10.1109/JSTARS.2024.3416175.
|
[19] |
MENDES JÚNIOR P R, DE SOUZA R M, DE O WERNECK R, et al. Nearest neighbors distance ratio open-set classifier[J]. Machine Learning, 2017, 106(3): 359–386. doi: 10.1007/s10994-016-5610-8.
|
[20] |
HUANG Yanyan, WANG Yong, SHI Kun, et al. HDNet: Hierarchical dynamic network for gait recognition using millimeter-wave radar[C]. 2023–2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Rhodes Island, Greece, 2023: 1–5. doi: 10.1109/ICASSP49357.2023.10096835.
|
[21] |
FAN Chao, PENG Yunjie, CAO Chunshui, et al. GaitPart: Temporal part-based model for gait recognition[C]. The 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 14213–14221. doi: 10.1109/CVPR42600.2020.01423.
|
[22] |
HUANG Xiaohu, ZHU Duowang, WANG Hao, et al. Context-sensitive temporal feature learning for gait recognition[C]. The 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 12889–12898. doi: 10.1109/ICCV48922.2021.01267.
|