Citation: | LIU Yuan, WANG Licheng, ZHOU Yongbin. TTRC-ABE: Traitor Traceable and Revocable CLWE-based ABE Scheme from Lattices[J]. Journal of Electronics & Information Technology, 2025, 47(6): 1911-1926. doi: 10.11999/JEIT240997 |
[1] |
SAHAI A and WATERS B. Fuzzy identity-based encryption[C]. The 24th Annual International Conference on Theory and Applications of Cryptographic Techniques, Aarhus, Denmark, 2005: 457–473. doi: 10.1007/11426639_27.
|
[2] |
REGEV O. On lattices, learning with errors, random linear codes, and cryptography[C]. The 37th Annual ACM Symposium on Theory of Computing, Baltimore, USA, 2005: 84–93. doi: 10.1145/1060590.1060603.
|
[3] |
LYUBASHEVSKY V, PEIKERT C, and REGEV O. On ideal lattices and learning with errors over rings[C]. 29th Annual International Conference on the Theory and Applications of Cryptographic Techniques, French, Riviera, 2010: 1–23. doi: 10.1007/978-3-642-13190-5_1.
|
[4] |
ZHANG Ruoqing, HUI L, YU S, et al. A traceable outsourcing CP-ABE scheme with attribute revocation[C]. The 2017 IEEE Trustcom/BigDataSE/ICESS, Sydney, Australia, 2017: 363–370. doi: 10.1109/Trustcom/BigDataSE/ICESS.2017.259.
|
[5] |
NING Jianting, CAO Zhenfu, DONG Xiaolei, et al. White-box traceable CP-ABE for cloud storage service: How to catch people leaking their access credentials effectively[J]. IEEE Transactions on Dependable and Secure Computing, 2018, 15(5): 883–897. doi: 10.1109/TDSC.2016.2608343.
|
[6] |
HAN Dezhi, PAN Nannan, and LI K C. A traceable and revocable ciphertext-policy attribute-based encryption scheme based on privacy protection[J]. IEEE Transactions on Dependable and Secure Computing, 2022, 19(1): 316–327. doi: 10.1109/TDSC.2020.2977646.
|
[7] |
ZHAO Yang, LIU Zhaozhong, AN Jingmin, et al. A traceable and revocable attribute-based encryption scheme based on policy hiding in smart healthcare scenarios[C]. The 17th International Conference on Information Security Practice and Experience, Taipei, China, 2022: 624–639. doi: 10.1007/978-3-031-21280-2_35.
|
[8] |
HE Xu, LI Lixiang, and PENG Haipeng. An enhanced traceable CP-ABE scheme against various types of privilege leakage in cloud storage[J]. Journal of Systems Architecture, 2023, 136: 102833. doi: 10.1016/j.sysarc.2023.102833.
|
[9] |
LIU Xiao, WEI Zhenyang, LI Gaoxiang, et al. An enhanced traceable access control scheme based on multi-authority CP-ABE for cloud-assisted e-health system[J]. Computer Networks, 2024, 254: 110766. doi: 10.1016/j.comnet.2024.110766.
|
[10] |
ZHANG Jiang and ZHANG Zhenfeng. A ciphertext policy attribute-based encryption scheme without pairings[C]. The 7th International Conference on Information Security and Cryptology, Beijing, China, 2011: 324–340. doi: 10.1007/978-3-642-34704-7_23.
|
[11] |
ZHANG Jiang, ZHANG Zhenfeng, and GE Aijun. Ciphertext policy attribute-based encryption from lattices[C]. The 7th ACM Symposium on Information, Computer and Communications Security, Seoul, Korea, 2012: 16–17. doi: 10.1145/2414456.2414464.
|
[12] |
AGRAWAL S, BOYEN X, VAIKUNTANATHAN V, et al. Functional encryption for threshold functions (or fuzzy IBE) from lattices[C]. The 15th International Conference on Practice and Theory in Public Key Cryptography, Darmstadt, Germany, 2012: 280–297. doi: 10.1007/978-3-642-30057-8_17.
|
[13] |
BOYEN X. Attribute-based functional encryption on lattices[C]. The 10th Theory of Cryptography Conference on Theory of Cryptography, Tokyo, Japan, 2013: 122–142. doi: 10.1007/978-3-642-36594-2_8.
|
[14] |
LIU Ximeng, MA Jiangeng, XIONG Jinbo, et al. Threshold attribute-based encryption with attribute hierarchy for lattices in the standard model[J]. IET Information Security, 2014, 8(4): 217–223. doi: 10.1049/iet-ifs.2013.0111.
|
[15] |
GORBUNOV S, VAIKUNTANATHAN V, and WEE H. Attribute-based encryption for circuits[C]. The 45th Annual ACM symposium on Theory of Computing, Palo Alto, USA, 2013: 545–554. doi: 10.1145/2488608.2488677.
|
[16] |
ZHAO Jian, GAO Haiying, and ZHANG Junqi. Attribute-based encryption for circuits on lattices[J]. Tsinghua Science and Technology, 2014, 19(5): 463–469. doi: 10.3969/j.issn.1007-0214.2014.05.005.
|
[17] |
BONEH D, GENTRY C, GORBUNOV S, et al. Fully key-homomorphic encryption, arithmetic circuit ABE and compact garbled circuit[C]. The 33rd Annual International Conference on the Theory and Applications of Cryptographic Techniques, Copenhagen, Denmark, 2014: 533–556. doi: 10.1007/978-3-642-55220-5_30.
|
[18] |
ZHU Weiling, YU Jianping, WANG Ting, et al. Efficient attribute-based encryption from R-LWE[J]. Chinese Journal of Electronics, 2014, 23(4): 778–782. doi: 10.23919/CJE.2014.10851999.
|
[19] |
GORBUNOV S and VINAYAGAMURTHY D. Riding on asymmetry: Efficient ABE for branching programs[C]. The 21st International Conference on Advances in Cryptology, Auckland, New Zealand, 2015: 550–574. doi: 10.1007/978-3-662-48797-6_23.
|
[20] |
吴立强, 杨晓元, 韩益亮. 基于理想格的高效模糊身份加密方案[J]. 计算机学报, 2015, 38(4): 775–782. doi: 10.3724/SP.J.1016.2015.00775.
WU Liqiang, YANG Xiaoyuan, and HAN Yiliang. An efficient FIBE scheme based on ideal lattices[J]. Chinese Journal of Computers, 2015, 38(4): 775–782. doi: 10.3724/SP.J.1016.2015.00775.
|
[21] |
ZHANG Guoyan, QIN Jing, and QAZI S. Multi-authority attribute-based encryption scheme from lattices[J]. Journal of Universal Computer Science, 2015, 21(3): 483–501. doi: 10.3217/jucs-021-03-0483.
|
[22] |
BRAKERSKI Z and VAIKUNTANATHAN V. Circuit-ABE from LWE: Unbounded attributes and semi-adaptive security[C]. The 36th Annual International Cryptology Conference on Advances in Cryptology, Santa Barbara, USA, 2016: 363–384. doi: 10.1007/978-3-662-53015-3_13.
|
[23] |
孙泽栋, 祝跃飞, 顾纯祥, 等. 基于RLWE的密钥策略属性加密体制[J]. 通信学报, 2016, 37(S1): 125–131. doi: 10.11959/j.issn.1000-436x.2016258.
SUN Zedong, ZHU Yuefei, GU Chunxiang, et al. RLWE-based key-policy ABE scheme[J]. Journal on Communications, 2016, 37(S1): 125–131. doi: 10.11959/j.issn.1000-436x.2016258.
|
[24] |
DAI Wei, DORÖZ Y, POLYAKOV Y, et al. Implementation and evaluation of a lattice-based key-policy ABE scheme[J]. IEEE Transactions on Information Forensics and Security, 2018, 13(5): 1169–1184. doi: 10.1109/TIFS.2017.2779427.
|
[25] |
闫玺玺, 刘媛, 李子臣, 等. 新的格上多机构属性基加密方案[J]. 电子与信息学报, 2018, 40(4): 811–817. doi: 10.11999/JEIT170628.
YAN Xixi, LIU Yuan, LI Zichen, et al. New multi-authority attribute-based encryption scheme on lattices[J]. Journal of Electronics & Information Technology, 2018, 40(4): 811–817. doi: 10.11999/JEIT170628.
|
[26] |
GÜR K D, POLYAKOV Y, ROHLOFF K, et al. Practical applications of improved Gaussian sampling for trapdoor lattices[J]. IEEE Transactions on Computers, 2019, 68(4): 570–584. doi: 10.1109/TC.2018.2874479.
|
[27] |
TSABARY R. Fully secure attribute-based encryption for t-CNF from LWE[C]. The 39th Annual International Cryptology Conference on Advances in Cryptology, Santa Barbara, USA, 2019: 62–85. doi: 10.1007/978-3-030-26948-7_3.
|
[28] |
WANG Geng, LIU Zhen, and GU Dawu. Ciphertext policy attribute-based encryption for circuits from LWE assumption[C]. The 21st International Conference on Information and Communications Security, Beijing, China, 2019: 278–396. doi: 10.1007/978-3-030-41579-2_22.
|
[29] |
LIU Yuan, WANG Licheng, LI Lixiang, et al. Secure and efficient multi-authority attribute-based encryption scheme from lattices[J]. IEEE Access, 2019, 7: 3665–3674. doi: 10.1109/ACCESS.2018.2888850.
|
[30] |
ARRAWAL S and YAMADA S. Optimal broadcast encryption from pairings and LWE[C]. The 39th Annual International Conference on Advances in Cryptology, Zagreb, Croatia, 2020: 13–43. doi: 10.1007/978-3-030-45721-1_2.
|
[31] |
LIU Yuan, WANG Licheng, SHEN Xiaoying, et al. Space-efficient key-policy attribute-based encryption from lattices and two-dimensional attributes[J]. Security and Communication Networks, 2020, 2020: 2345369. doi: 10.1155/2020/2345369.
|
[32] |
ZHAO Siyu, JIANG Rui, and BHARGAVA B. RL-ABE: A revocable lattice attribute based encryption scheme based on R-LWE problem in cloud storage[J]. IEEE Transactions on Services Computing, 2022, 15(2): 1026–1035. doi: 10.1109/TSC.2020.2973256.
|
[33] |
DATTA P, KOMARGODSKI I, and WATERS B. Decentralized multi-authority ABE for DNFs from LWE[C]. The 40th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Zagreb, Croatia, 2021: 177–209. doi: 10.1007/978-3-030-77870-5_7.
|
[34] |
WATERS B, WEE H, and WU D J. Multi-authority ABE from lattices without random oracles[C]. The 20th International Conference on Theory of Cryptography, Chicago, USA, 2022: 651–679. doi: 10.1007/978-3-031-22318-1_23.
|
[35] |
WEE H. Optimal broadcast encryption and CP-ABE from evasive lattice assumptions[C]. The 4lst Annual international Conference on the Theory and Applications of Cryptographic Techniques, Trondheim, Norway, 2022: 217–241. doi: 10.1007/978-3-031-07085-3_8.
|
[36] |
LUO Fucai, AL-KUWARI S, WANG Haiyan, et al. Revocable attribute-based encryption from standard lattices[J]. Computer Standards & Interfaces, 2023, 84: 103698. doi: 10.1016/j.csi.2022.103698.
|
[37] |
HUANG Boxue, GAO Juntao, and LI Xuelian. Efficient lattice-based revocable attribute-based encryption against decryption key exposure for cloud file sharing[J]. Journal of Cloud Computing, 2023, 12(1): 37. doi: 10.1186/s13677-023-00414-w.
|
[38] |
AGRAWAL S, KUMARI S, and YAMADA S. Attribute based encryption for Turing machines from lattices[C]. The 44th Annual International Cryptology Conference, Santa Barbara, CA, USA, 2024: 352–386. doi: 10.1007/978-3-031-68382-4_11.
|
[39] |
XIE Shuwei, ZHANG Leyou, WU Qing, et al. Flexibly expressive and revocable multi-authority KP-ABE scheme from RLWE for internet of medical things[J]. Journal of Systems Architecture, 2024, 152: 103179. doi: 10.1016/j.sysarc.2024.103179.
|
[40] |
GROVER C, MENDELSOHN A, LING C, et al. Non-commutative ring learning with errors from cyclic algebras[J]. Journal of Cryptology, 2022, 35(3): 22. doi: 10.1007/s00145-022-09430-6.
|
[41] |
MENDELSOHN A and LING Cong. Fractional non-norm elements for division algebras, and an application to cyclic learning with errors[J]. Advances in Mathematics of Communications, 2024, 18(2): 410–424. doi: 10.3934/amc.2023043.
|
[42] |
LANGLOIS A and STEHLÉ D. Worst-case to average-case reductions for module lattices[J]. Designs, Codes and Cryptography, 2015, 75(3): 565–599. doi: 10.1007/s10623-014-9938-4.
|
[43] |
ZHAO Puning and LAI Lifeng. Minimax optimal Q learning with nearest neighbors[J]. IEEE Transactions on Information Theory, 2025, 71(2): 1300–1322. doi: 10.1109/TIT.2024.3522347.
|
[44] |
ZHANG Pengfei, CHENG Xiang, SU Sen, et al. Effective truth discovery under local differential privacy by leveraging noise-aware probabilistic estimation and fusion[J]. Knowledge-Based Systems, 2023, 261: 110213. doi: 10.1016/j.knosys.2022.110213.
|
[45] |
FENG Jun, WU Yefan, SUN Hong, et al. Panther: Practical secure two-party neural network inference[J]. IEEE Transactions on Information Forensics and Security, 2025, 20: 1149–1162. doi: 10.1109/TIFS.2025.3526063.
|