Citation: | WANG Hongyan, PENG Jun, YANG Kai. Texture-Enhanced Infrared-Visible Image Fusion Approach Driven by Denoising Diffusion Model[J]. Journal of Electronics & Information Technology, 2025, 47(6): 1992-2004. doi: 10.11999/JEIT240975 |
[1] |
YE Yuanxin, ZHANG Jiacheng, ZHOU Liang, et al. Optical and SAR image fusion based on complementary feature decomposition and visual saliency features[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5205315. doi: 10.1109/tgrs.2024.3366519.
|
[2] |
ZHANG Xingchen and DEMIRIS Y. Visible and infrared image fusion using deep learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(8): 10535–10554. doi: 10.1109/TPAMI.2023.3261282.
|
[3] |
JAIN D K, ZHAO Xudong, GONZÁLEZ-ALMAGRO G, et al. Multimodal pedestrian detection using metaheuristics with deep convolutional neural network in crowded scenes[J]. Information Fusion, 2023, 95: 401–414. doi: 10.1016/j.inffus.2023.02.014.
|
[4] |
ZHANG Haiping, YUAN Di, SHU Xiu, et al. A comprehensive review of RGBT tracking[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 5027223. doi: 10.1109/TIM.2024.3436098.
|
[5] |
HUANG Nianchang, LIU Jianan, LUO Yongjiang, et al. Exploring modality-shared appearance features and modality-invariant relation features for cross-modality person re-identification[J]. Pattern Recognition, 2023, 135: 109145. doi: 10.1016/j.patcog.2022.109145.
|
[6] |
SHAO Hao, ZENG Quansheng, HOU Qibin, et al. MCANet: Medical image segmentation with multi-scale cross-axis attention[J]. Machine Intelligence Research, 2025, 22(3): 437–451. doi: 10.1007/s11633-025-1552-6.
|
[7] |
CHEN Jun, LI Xuejiao, LUO Linbo, et al. Infrared and visible image fusion based on target-enhanced multiscale transform decomposition[J]. Information Sciences, 2020, 508: 64–78. doi: 10.1016/j.ins.2019.08.066.
|
[8] |
KONG Weiwei, LEI Yang, and ZHAO Huaixun. Adaptive fusion method of visible light and infrared images based on non-subsampled shearlet transform and fast non-negative matrix factorization[J]. Infrared Physics & Technology, 2014, 67: 161–172. doi: 10.1016/j.infrared.2014.07.019.
|
[9] |
LIU Yu, LIU Shuping, and WANG Zengfu. A general framework for image fusion based on multi-scale transform and sparse representation[J]. Information Fusion, 2015, 24: 147–164. doi: 10.1016/j.inffus.2014.09.004.
|
[10] |
MA Jiayi, CHEN Chen, LI Chang, et al. Infrared and visible image fusion via gradient transfer and total variation minimization[J]. Information Fusion, 2016, 31: 100–109. doi: 10.1016/j.inffus.2016.02.001.
|
[11] |
MA Jinlei, ZHOU Zhiqiang, WANG Bo, et al. Infrared and visible image fusion based on visual saliency map and weighted least square optimization[J]. Infrared Physics & Technology, 2017, 82: 8–17. doi: 10.1016/j.infrared.2017.02.005.
|
[12] |
LIU Yu, CHEN Xun, CHENG Juan, et al. Infrared and visible image fusion with convolutional neural networks[J]. International Journal of Wavelets, Multiresolution and Information Processing, 2018, 16(3): 1850018. doi: 10.1142/s0219691318500182.
|
[13] |
ZHANG Hao, XU Han, XIAO Yang, et al. Rethinking the image fusion: A fast unified image fusion network based on proportional maintenance of gradient and intensity[C]. The 34th AAAI Conference on Artificial Intelligence, New York, USA, 2020: 12797–12804. doi: 10.1609/aaai.v34i07.6975.
|
[14] |
XU Han, MA Jiayi, JIANG Junjun, et al. U2Fusion: A unified unsupervised image fusion network[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(1): 502–518. doi: 10.1109/tpami.2020.3012548.
|
[15] |
TANG Linfeng, YUAN Jiteng, ZHANG Hao, et al. PIAFusion: A progressive infrared and visible image fusion network based on illumination aware[J]. Information Fusion, 2022, 83/84: 79–92. doi: 10.1016/j.inffus.2022.03.007.
|
[16] |
YANG Chenxuan, HE Yunan, SUN Ce, et al. Multi-scale convolutional neural networks and saliency weight maps for infrared and visible image fusion[J]. Journal of Visual Communication and Image Representation, 2024, 98: 104015. doi: 10.1016/j.jvcir.2023.104015.
|
[17] |
PRABHAKAR K R, SRIKAR V S, and BABU R V. DeepFuse: A deep unsupervised approach for exposure fusion with extreme exposure image pairs[C]. 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 4724–4732. doi: 10.1109/iccv.2017.505.
|
[18] |
LI Hui and WU Xiaojun. DenseFuse: A fusion approach to infrared and visible images[J]. IEEE Transactions on Image Processing, 2019, 28(5): 2614–2623. doi: 10.1109/tip.2018.2887342.
|
[19] |
JIAN Lihua, YANG Xiaomin, LIU Zheng, et al. SEDRFuse: A symmetric encoder-decoder with residual block network for infrared and visible image fusion[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 5002215. doi: 10.1109/tim.2020.3022438.
|
[20] |
ZHENG Yulong, ZHAO Yan, CHEN Jian, et al. HFHFusion: A heterogeneous feature highlighted method for infrared and visible image fusion[J]. Optics Communications, 2024, 571: 130941. doi: 10.1016/j.optcom.2024.130941.
|
[21] |
GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]. The 28th International Conference on Neural Information Processing Systems, Montreal, Canada, 2014: 2672–2680.
|
[22] |
MA Jiayi, YU Wei, LIANG Pengwei, et al. FusionGAN: A generative adversarial network for infrared and visible image fusion[J]. Information Fusion, 2019, 48: 11–26. doi: 10.1016/j.inffus.2018.09.004.
|
[23] |
MA Jiayi, XU Han, JIANG Junjun, et al. DDcGAN: A Dual-discriminator conditional generative adversarial network for multi-resolution image fusion[J]. IEEE Transactions on Image Processing, 2020, 29: 4980–4995. doi: 10.1109/tip.2020.2977573.
|
[24] |
YIN Haitao, XIAO Jinghu, and CHEN Hao. CSPA-GAN: A cross-scale pyramid attention GAN for infrared and visible image fusion[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 5027011. doi: 10.1109/tim.2023.3317932.
|
[25] |
CHANG Le, HUANG Yongdong, LI Qiufu, et al. DUGAN: Infrared and visible image fusion based on dual fusion paths and a U-type discriminator[J]. Neurocomputing, 2024, 578: 127391. doi: 10.1016/j.neucom.2024.127391.
|
[26] |
YUE Jun, FANG Leyuan, XIA Shaobo, et al. Dif-Fusion: Toward high color fidelity in infrared and visible image fusion with diffusion models[J]. IEEE Transactions on Image Processing, 2023, 32: 5705–5720. doi: 10.1109/tip.2023.3322046.
|
[27] |
ZHAO Zixiang, BAI Haowen, ZHU Yuanzhi, et al. DDFM: Denoising diffusion model for multi-modality image fusion[C]. The IEEE/CVF International Conference on Computer Vision (ICCV), Paris, France, 2023: 8048–8059. doi: 10.1109/iccv51070.2023.00742.
|
[28] |
HO J, JAIN A, and ABBEEL P. Denoising diffusion probabilistic models[C]. The 34th International Conference on Neural Information Processing Systems, Vancouver, Canada, 2020: 574.
|
[29] |
TOET A. The TNO multiband image data collection[J]. Data in Brief, 2017, 15: 249–251. doi: 10.1016/j.dib.2017.09.038.
|
[30] |
BANDARA W G C, NAIR N G, and PATEL V M. DDPM-CD: Denoising diffusion probabilistic models as feature extractors for remote sensing change detection[C]. 2025 IEEE/CVF Winter Conference on Applications of Computer Vision, Tucson, USA, 2025: 5250–5262. doi: 10.1109/WACV61041.2025.00513.
|
[31] |
BAVIRISETTI D P and DHULI R. Two-scale image fusion of visible and infrared images using saliency detection[J]. Infrared Physics & Technology, 2016, 76: 52–64. doi: 10.1016/j.infrared.2016.01.009.
|
[32] |
RAO Yunjiang. In-fibre Bragg grating sensors[J]. Measurement Science and Technology, 1997, 8(4): 355–375. doi: 10.1088/0957-0233/8/4/002.
|
[33] |
QU Guihong, ZHANG Dali, and YAN Pingfan. Information measure for performance of image fusion[J]. Electronics Letters, 2002, 38(7): 313–315. doi: 10.1049/el:20020212.
|
[34] |
HAN Yu, CAI Yunze, CAO Yin, et al. A new image fusion performance metric based on visual information fidelity[J]. Information Fusion, 2013, 14(2): 127–135. doi: 10.1016/j.inffus.2011.08.002.
|
[35] |
ASLANTAS V and BENDES E. A new image quality metric for image fusion: The sum of the correlations of differences[J]. AEU-International Journal of Electronics and Communications, 2015, 69(12): 1890–1896. doi: 10.1016/j.aeue.2015.09.004.
|
[36] |
XYDEAS C S and PETROVIĆ V. Objective image fusion performance measure[J]. Electronics Letters, 2000, 36(4): 308–309. doi: 10.1049/el:20000267.
|
[37] |
ESKICIOGLU A M and FISHER P S. Image quality measures and their performance[J]. IEEE Transactions on Communications, 1995, 43(12): 2959–2965. doi: 10.1109/26.477498.
|