Advanced Search
Volume 47 Issue 6
Jun.  2025
Turn off MathJax
Article Contents
WANG Hongyan, PENG Jun, YANG Kai. Texture-Enhanced Infrared-Visible Image Fusion Approach Driven by Denoising Diffusion Model[J]. Journal of Electronics & Information Technology, 2025, 47(6): 1992-2004. doi: 10.11999/JEIT240975
Citation: WANG Hongyan, PENG Jun, YANG Kai. Texture-Enhanced Infrared-Visible Image Fusion Approach Driven by Denoising Diffusion Model[J]. Journal of Electronics & Information Technology, 2025, 47(6): 1992-2004. doi: 10.11999/JEIT240975

Texture-Enhanced Infrared-Visible Image Fusion Approach Driven by Denoising Diffusion Model

doi: 10.11999/JEIT240975 cstr: 32379.14.JEIT240975
Funds:  The National Natural Science Foundation of China (61871164), The Key Projects of Natural Science Foundation of Zhejiang Province (LZ21F010002), The Laboratory Research Foundation of State Key Laboratory of Complex Electromagnetic Environment Effects on Electronics and Information System (CEMEE2023K0301)
  • Received Date: 2024-10-30
  • Rev Recd Date: 2025-05-27
  • Available Online: 2025-06-13
  • Publish Date: 2025-06-30
  •   Objective  The growing demand for high-quality fusion of infrared and visible images in various applications has highlighted the limitations of existing methods, which often fail to preserve texture details or introduce artifacts that degrade structural integrity and color fidelity. To address these challenges, this study proposes a fusion method based on a denoising diffusion model. The approach employs a multi-scale spatiotemporal feature extraction and fusion strategy to improve structural consistency, texture sharpness, and color balance in the fused image. The resulting fusion images better align with human visual perception and demonstrate enhanced reliability in practical applications.  Methods  The proposed method integrates a denoising diffusion model to extract multi-scale spatiotemporal features from infrared and visible images, enabling the capture of fine-grained structural and textural information. To improve edge preservation and reduce blurring, a high-frequency texture enhancement module based on convolution operations is employed to strengthen edge representation. A Dual-directional Multi-scale Convolution Module (DMCM) extracts hierarchical features across multiple scales, while a Bidirectional Attention Fusion Module dynamically emphasizes key global information to improve the completeness of feature representation. The fusion process is optimized using a hybrid loss function that combines adaptive structural similarity loss, multi-channel intensity loss, and multi-channel texture loss. This combination improves color consistency, structural fidelity, and the retention of high-frequency details.  Results and Discussions  Experiments conducted on the Multi-Spectral Road Scenarios (MSRS) and TNO datasets demonstrate the effectiveness and generalization capacity of the proposed method. In daytime scenes (Fig. 4, Fig. 5), the method reduces edge distortion and corrects color saturation imbalance, producing sharper edges and more balanced brightness in high-contrast regions such as vehicles and road obstacles. In nighttime scenes (Fig. 6), it maintains the saliency of thermal targets and smooth color transitions, avoiding spectral artifacts typically introduced by simple feature fusion. Generalization tests on the TNO dataset (Fig. 7) confirm the robustness of the approach. In contrast to the overlapping light source artifacts observed in Dif-Fusion, the proposed method enhances thermal targets while preserving background details. Quantitative evaluation (Table 1, Fig. 8) shows improved contrast, structural fidelity, and edge preservation.  Conclusions  This study presents a texture-enhanced infrared–visible image fusion method driven by a denoising diffusion model. By integrating multi-scale spatiotemporal feature extraction, feature fusion, and hybrid loss optimization, the method demonstrates clear advantages in texture preservation, color consistency, and edge sharpness. Experimental results across multiple datasets confirm the fusion quality and generalization capability of the proposed approach.
  • loading
  • [1]
    YE Yuanxin, ZHANG Jiacheng, ZHOU Liang, et al. Optical and SAR image fusion based on complementary feature decomposition and visual saliency features[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5205315. doi: 10.1109/tgrs.2024.3366519.
    [2]
    ZHANG Xingchen and DEMIRIS Y. Visible and infrared image fusion using deep learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(8): 10535–10554. doi: 10.1109/TPAMI.2023.3261282.
    [3]
    JAIN D K, ZHAO Xudong, GONZÁLEZ-ALMAGRO G, et al. Multimodal pedestrian detection using metaheuristics with deep convolutional neural network in crowded scenes[J]. Information Fusion, 2023, 95: 401–414. doi: 10.1016/j.inffus.2023.02.014.
    [4]
    ZHANG Haiping, YUAN Di, SHU Xiu, et al. A comprehensive review of RGBT tracking[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 5027223. doi: 10.1109/TIM.2024.3436098.
    [5]
    HUANG Nianchang, LIU Jianan, LUO Yongjiang, et al. Exploring modality-shared appearance features and modality-invariant relation features for cross-modality person re-identification[J]. Pattern Recognition, 2023, 135: 109145. doi: 10.1016/j.patcog.2022.109145.
    [6]
    SHAO Hao, ZENG Quansheng, HOU Qibin, et al. MCANet: Medical image segmentation with multi-scale cross-axis attention[J]. Machine Intelligence Research, 2025, 22(3): 437–451. doi: 10.1007/s11633-025-1552-6.
    [7]
    CHEN Jun, LI Xuejiao, LUO Linbo, et al. Infrared and visible image fusion based on target-enhanced multiscale transform decomposition[J]. Information Sciences, 2020, 508: 64–78. doi: 10.1016/j.ins.2019.08.066.
    [8]
    KONG Weiwei, LEI Yang, and ZHAO Huaixun. Adaptive fusion method of visible light and infrared images based on non-subsampled shearlet transform and fast non-negative matrix factorization[J]. Infrared Physics & Technology, 2014, 67: 161–172. doi: 10.1016/j.infrared.2014.07.019.
    [9]
    LIU Yu, LIU Shuping, and WANG Zengfu. A general framework for image fusion based on multi-scale transform and sparse representation[J]. Information Fusion, 2015, 24: 147–164. doi: 10.1016/j.inffus.2014.09.004.
    [10]
    MA Jiayi, CHEN Chen, LI Chang, et al. Infrared and visible image fusion via gradient transfer and total variation minimization[J]. Information Fusion, 2016, 31: 100–109. doi: 10.1016/j.inffus.2016.02.001.
    [11]
    MA Jinlei, ZHOU Zhiqiang, WANG Bo, et al. Infrared and visible image fusion based on visual saliency map and weighted least square optimization[J]. Infrared Physics & Technology, 2017, 82: 8–17. doi: 10.1016/j.infrared.2017.02.005.
    [12]
    LIU Yu, CHEN Xun, CHENG Juan, et al. Infrared and visible image fusion with convolutional neural networks[J]. International Journal of Wavelets, Multiresolution and Information Processing, 2018, 16(3): 1850018. doi: 10.1142/s0219691318500182.
    [13]
    ZHANG Hao, XU Han, XIAO Yang, et al. Rethinking the image fusion: A fast unified image fusion network based on proportional maintenance of gradient and intensity[C]. The 34th AAAI Conference on Artificial Intelligence, New York, USA, 2020: 12797–12804. doi: 10.1609/aaai.v34i07.6975.
    [14]
    XU Han, MA Jiayi, JIANG Junjun, et al. U2Fusion: A unified unsupervised image fusion network[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(1): 502–518. doi: 10.1109/tpami.2020.3012548.
    [15]
    TANG Linfeng, YUAN Jiteng, ZHANG Hao, et al. PIAFusion: A progressive infrared and visible image fusion network based on illumination aware[J]. Information Fusion, 2022, 83/84: 79–92. doi: 10.1016/j.inffus.2022.03.007.
    [16]
    YANG Chenxuan, HE Yunan, SUN Ce, et al. Multi-scale convolutional neural networks and saliency weight maps for infrared and visible image fusion[J]. Journal of Visual Communication and Image Representation, 2024, 98: 104015. doi: 10.1016/j.jvcir.2023.104015.
    [17]
    PRABHAKAR K R, SRIKAR V S, and BABU R V. DeepFuse: A deep unsupervised approach for exposure fusion with extreme exposure image pairs[C]. 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 4724–4732. doi: 10.1109/iccv.2017.505.
    [18]
    LI Hui and WU Xiaojun. DenseFuse: A fusion approach to infrared and visible images[J]. IEEE Transactions on Image Processing, 2019, 28(5): 2614–2623. doi: 10.1109/tip.2018.2887342.
    [19]
    JIAN Lihua, YANG Xiaomin, LIU Zheng, et al. SEDRFuse: A symmetric encoder-decoder with residual block network for infrared and visible image fusion[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 5002215. doi: 10.1109/tim.2020.3022438.
    [20]
    ZHENG Yulong, ZHAO Yan, CHEN Jian, et al. HFHFusion: A heterogeneous feature highlighted method for infrared and visible image fusion[J]. Optics Communications, 2024, 571: 130941. doi: 10.1016/j.optcom.2024.130941.
    [21]
    GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]. The 28th International Conference on Neural Information Processing Systems, Montreal, Canada, 2014: 2672–2680.
    [22]
    MA Jiayi, YU Wei, LIANG Pengwei, et al. FusionGAN: A generative adversarial network for infrared and visible image fusion[J]. Information Fusion, 2019, 48: 11–26. doi: 10.1016/j.inffus.2018.09.004.
    [23]
    MA Jiayi, XU Han, JIANG Junjun, et al. DDcGAN: A Dual-discriminator conditional generative adversarial network for multi-resolution image fusion[J]. IEEE Transactions on Image Processing, 2020, 29: 4980–4995. doi: 10.1109/tip.2020.2977573.
    [24]
    YIN Haitao, XIAO Jinghu, and CHEN Hao. CSPA-GAN: A cross-scale pyramid attention GAN for infrared and visible image fusion[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 5027011. doi: 10.1109/tim.2023.3317932.
    [25]
    CHANG Le, HUANG Yongdong, LI Qiufu, et al. DUGAN: Infrared and visible image fusion based on dual fusion paths and a U-type discriminator[J]. Neurocomputing, 2024, 578: 127391. doi: 10.1016/j.neucom.2024.127391.
    [26]
    YUE Jun, FANG Leyuan, XIA Shaobo, et al. Dif-Fusion: Toward high color fidelity in infrared and visible image fusion with diffusion models[J]. IEEE Transactions on Image Processing, 2023, 32: 5705–5720. doi: 10.1109/tip.2023.3322046.
    [27]
    ZHAO Zixiang, BAI Haowen, ZHU Yuanzhi, et al. DDFM: Denoising diffusion model for multi-modality image fusion[C]. The IEEE/CVF International Conference on Computer Vision (ICCV), Paris, France, 2023: 8048–8059. doi: 10.1109/iccv51070.2023.00742.
    [28]
    HO J, JAIN A, and ABBEEL P. Denoising diffusion probabilistic models[C]. The 34th International Conference on Neural Information Processing Systems, Vancouver, Canada, 2020: 574.
    [29]
    TOET A. The TNO multiband image data collection[J]. Data in Brief, 2017, 15: 249–251. doi: 10.1016/j.dib.2017.09.038.
    [30]
    BANDARA W G C, NAIR N G, and PATEL V M. DDPM-CD: Denoising diffusion probabilistic models as feature extractors for remote sensing change detection[C]. 2025 IEEE/CVF Winter Conference on Applications of Computer Vision, Tucson, USA, 2025: 5250–5262. doi: 10.1109/WACV61041.2025.00513.
    [31]
    BAVIRISETTI D P and DHULI R. Two-scale image fusion of visible and infrared images using saliency detection[J]. Infrared Physics & Technology, 2016, 76: 52–64. doi: 10.1016/j.infrared.2016.01.009.
    [32]
    RAO Yunjiang. In-fibre Bragg grating sensors[J]. Measurement Science and Technology, 1997, 8(4): 355–375. doi: 10.1088/0957-0233/8/4/002.
    [33]
    QU Guihong, ZHANG Dali, and YAN Pingfan. Information measure for performance of image fusion[J]. Electronics Letters, 2002, 38(7): 313–315. doi: 10.1049/el:20020212.
    [34]
    HAN Yu, CAI Yunze, CAO Yin, et al. A new image fusion performance metric based on visual information fidelity[J]. Information Fusion, 2013, 14(2): 127–135. doi: 10.1016/j.inffus.2011.08.002.
    [35]
    ASLANTAS V and BENDES E. A new image quality metric for image fusion: The sum of the correlations of differences[J]. AEU-International Journal of Electronics and Communications, 2015, 69(12): 1890–1896. doi: 10.1016/j.aeue.2015.09.004.
    [36]
    XYDEAS C S and PETROVIĆ V. Objective image fusion performance measure[J]. Electronics Letters, 2000, 36(4): 308–309. doi: 10.1049/el:20000267.
    [37]
    ESKICIOGLU A M and FISHER P S. Image quality measures and their performance[J]. IEEE Transactions on Communications, 1995, 43(12): 2959–2965. doi: 10.1109/26.477498.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article Metrics

    Article views (203) PDF downloads(21) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return