Advanced Search
Volume 47 Issue 6
Jun.  2025
Turn off MathJax
Article Contents
DU Yonghao, LI Lei, XU Shilong, CHEN Ming, CHEN Yingguo. Evolutionary Optimization for Satellite Constellation Task Scheduling Based on Intelligent Optimization Engine[J]. Journal of Electronics & Information Technology, 2025, 47(6): 1645-1657. doi: 10.11999/JEIT240974
Citation: DU Yonghao, LI Lei, XU Shilong, CHEN Ming, CHEN Yingguo. Evolutionary Optimization for Satellite Constellation Task Scheduling Based on Intelligent Optimization Engine[J]. Journal of Electronics & Information Technology, 2025, 47(6): 1645-1657. doi: 10.11999/JEIT240974

Evolutionary Optimization for Satellite Constellation Task Scheduling Based on Intelligent Optimization Engine

doi: 10.11999/JEIT240974 cstr: 32379.14.JEIT240974
  • Received Date: 2024-10-30
  • Rev Recd Date: 2025-04-28
  • Available Online: 2025-05-12
  • Publish Date: 2025-06-30
  •   Objective  The expansion of China’s aerospace capabilities has led to the widespread deployment of remote sensing satellites for applications such as land resource surveys and disaster monitoring. However, current methods face substantial challenges in the integrated scheduling of complex targets, including multi-frequency observations, dense point clusters, and wide-area imaging. This study develops an intelligent task planning engine architecture tailored for heterogeneous satellite constellations. By applying advanced modeling and evolutionary optimization techniques, the proposed framework addresses the collaborative scheduling of multi-dimensional targets, aiming to overcome key limitations in traditional satellite mission planning.  Methods  Through systematic analysis of models and algorithms, this study decouples the “Constraint-Decision-Reward” framework and develops an optimization algorithm module featuring “global evolution + local search + data-driven” strategies. At the modeling level, standard tasks are derived via target decomposition, and a multi-dimensional scheduling model for complex targets is established. At the algorithmic level, a Learning Memetic Algorithm (LMA) based on dual-model evolution is proposed. This approach incorporates strategies for initial solution generation, global optimization, and a generalized neighborhood search operator template to improve solution diversity and enhance global exploration capabilities. Additionally, data-driven optimization and dynamic multi-stage rapid insertion strategies are introduced to address real-time scheduling requirements.  Results and Discussions   Comprehensive experimental comparisons are conducted across three scenario scales—low, medium, and high difficulty—and three task planning scenarios (static scheduling, dynamic three-stage scheduling, and dynamic twelve-stage scheduling). Both classical and advanced algorithms are evaluated. Ablation experiments (Tables 4 and 5) assess the contribution of each component within the LMA. In all task scenarios, the proposed method consistently outperforms advanced algorithms, including adaptive large neighborhood search and the reinforcement learning genetic algorithm, as shown in Figure 11 and Table 3. The algorithm reliably completes iterations within 20 seconds, demonstrating high computational efficiency.  Conclusions  By standardizing complex targets and generating tasks, this research effectively addresses the integrated scheduling challenge of multi-dimensional objectives across heterogeneous resources. Experimental results show that the LMA outperforms traditional algorithms in terms of both solution quality and computational efficiency. The dual-model evolution mechanism enhances the algorithm’s global search capabilities, while the dynamic insertion strategy effectively handles scenarios with dynamically arriving tasks. These innovations highlight the algorithm’s significant advantages in aerospace mission scheduling.
  • loading
  • [1]
    KUENZER C, OTTINGER M, WEGMANN M, et al. Earth observation satellite sensors for biodiversity monitoring: Potentials and bottlenecks[J]. International Journal of Remote Sensing, 2014, 35(18): 6599–6647. doi: 10.1080/01431161.2014.964349.
    [2]
    GUO Huadong. Understanding global natural disasters and the role of earth observation[J]. International Journal of Digital Earth, 2010, 3(3): 221–230. doi: 10.1080/17538947.2010.499662.
    [3]
    阮启明, 谭跃进, 李菊芳, 等. 对地观测卫星的区域目标分割与优选问题研究[J]. 测绘科学, 2006, 31(1): 98–100. doi: 10.3771/j.issn.1009-2307.2006.01.034.

    RUAN Qiming, TAN Yuejin, LI Jufang, et al. Research on segmenting and selecting of area targets[J]. Science of Surveying and Mapping, 2006, 31(1): 98–100. doi: 10.3771/j.issn.1009-2307.2006.01.034.
    [4]
    耿远卓, 郭延宁, 李传江, 等. 敏捷凝视卫星密集点目标聚类与最优观测规划[J]. 控制与决策, 2020, 35(3): 613–621. doi: 10.13195/j.kzyjc.2018.0800.

    GENG Yuanzhuo, GUO Yanning, LI Chuanjiang, et al. Optimal mission planning with task clustering for intensive point targets observation of staring mode agile satellite[J]. Control and Decision, 2020, 35(3): 613–621. doi: 10.13195/j.kzyjc.2018.0800.
    [5]
    WANG Xinwei, WU Guohua, XING Lining, et al. Agile earth observation satellite scheduling over 20 years: Formulations, methods, and future directions[J]. IEEE Systems Journal, 2021, 15(3): 3881–3892. doi: 10.1109/jsyst.2020.2997050.
    [6]
    SONG Yanjie, OU Junwei, PEDRYCZ W, et al. Generalized model and deep reinforcement learning-based evolutionary method for multitype satellite observation scheduling[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2024, 54(4): 2576–2589. doi: 10.1109/TSMC.2023.3345928.
    [7]
    YAO Feng, DU Yonghao, LI Lei, et al. General modeling and optimization technique for real-world earth observation satellite scheduling[J]. Frontiers of Engineering Management, 2023, 10(4): 695–709. doi: 10.1007/s42524-023-0263-3.
    [8]
    SONG Yanjie, WEI Luona, YANG Qing, et al. RL-GA: A reinforcement learning-based genetic algorithm for electromagnetic detection satellite scheduling problem[J]. Swarm and Evolutionary Computation, 2023, 77: 101236. doi: 10.1016/j.swevo.2023.101236.
    [9]
    LI Lei, DU Yonghao, YAO Feng, et al. Learning memetic algorithm based on variable population and neighborhood for multi-complex target scheduling of large-scale imaging satellites[J]. Swarm and Evolutionary Computation, 2025, 92: 101789. doi: 10.1016/j.swevo.2024.101789.
    [10]
    WU Jian, SONG Bingyu, ZHANG Guoting, et al. A data-driven improved genetic algorithm for agile earth observation satellite scheduling with time-dependent transition time[J]. Computers & Industrial Engineering, 2022, 174: 108823. doi: 10.1016/j.cie.2022.108823.
    [11]
    DU Bin and LI Shuang. A new multi-satellite autonomous mission allocation and planning method[J]. Acta Astronautica, 2019, 163: 287–298. doi: 10.1016/j.actaastro.2018.11.001.
    [12]
    ZHAO Yanbin, DU Bin, and LI Shuang. Agile satellite mission planning via task clustering and double-layer tabu algorithm[J]. Computer Modeling in Engineering & Sciences, 2020, 122(1): 235–257. doi: 10.32604/cmes.2020.08070.
    [13]
    潘耀, 饶启龙, 池忠明, 等. 改进的遥感卫星成像任务单轨最优团划分聚类方法[J]. 上海航天, 2018, 35(3): 34–40. doi: 10.19328/j.cnki.1006-1630.2018.03.006.

    PAN Yao, RAO Qilong, CHI Zhongming, et al. Improved clustering method of spot target based on best clique partition in single orbit for remote sensing satellite imaging[J]. Aerospace Shanghai, 2018, 35(3): 34–40. doi: 10.19328/j.cnki.1006-1630.2018.03.006.
    [14]
    张聪, 袁利, 王云鹏, 等. 基于智能聚类的遥感卫星成像任务自主聚合方法[J]. 空间控制技术与应用, 2022, 48(5): 47–55. doi: 10.3969/j.issn.1674-1579.2022.05.006.

    ZHANG Cong, YUAN Li, WANG Yunpeng, et al. Autonomous aggregation method for imaging tasks of observation satellite based on intelligent clustering[J]. Aerospace Control and Application, 2022, 48(5): 47–55. doi: 10.3969/j.issn.1674-1579.2022.05.006.
    [15]
    LEMAÎTRE M, VERFAILLIE G, JOUHAUD F, et al. Selecting and scheduling observations of agile satellites[J]. Aerospace Science and Technology, 2002, 6(5): 367–381. doi: 10.1016/S1270-9638(02)01173-2.
    [16]
    章登义, 郭雷, 王骞, 等. 一种面向区域目标的敏捷成像卫星单轨调度方法[J]. 武汉大学学报: 信息科学版, 2014, 39(8): 901–905. doi: 10.13203/j.whugis20130233.

    ZHANG Dengyi, GUO Lei, WANG Qian, et al. An improved single-orbit scheduling method for agile imaging satellite towards area target[J]. Geomatics and Information Science of Wuhan University, 2014, 39(8): 901–905. doi: 10.13203/j.whugis20130233.
    [17]
    余婧, 喜进军, 于龙江, 等. 敏捷卫星同轨多条带拼幅成像模式研究[J]. 航天器工程, 2015, 24(2): 27–34. doi: 10.3969/j.issn.1673-8748.2015.02.005.

    YU Jing, XI Jinjun, YU Longjiang, et al. Study of one-orbit multi-stripes splicing imaging for agile satellite[J]. Spacecraft Engineering, 2015, 24(2): 27–34. doi: 10.3969/j.issn.1673-8748.2015.02.005.
    [18]
    杨文沅, 贺仁杰, 耿西英智, 等. 面向区域目标的敏捷卫星非沿迹条带划分方法[J]. 科学技术与工程, 2016, 16(22): 82–87. doi: 10.3969/j.issn.1671-1815.2016.22.014.

    YANG Wenyuan, HE Renjie, GENG Xiyingzhi, et al. Area target oriented non-along-with-track strip partitioning method for agile satellite[J]. Science Technology and Engineering, 2016, 16(22): 82–87. doi: 10.3969/j.issn.1671-1815.2016.22.014.
    [19]
    LU Zezhong, SHEN Xin, LI Deren, et al. Multiple super-agile satellite collaborative mission planning for area target imaging[J]. International Journal of Applied Earth Observation and Geoinformation, 2023, 117: 103211. doi: 10.1016/j.jag.2023.103211.
    [20]
    GU Yi, HAN Chao, CHEN Yuhan, et al. Large region targets observation scheduling by multiple satellites using resampling particle swarm optimization[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(2): 1800–1815. doi: 10.1109/TAES.2022.3205565.
    [21]
    WU Jian, CHEN Yuning, HE Yongming, et al. Survey on autonomous task scheduling technology for Earth observation satellites[J]. Journal of Systems Engineering and Electronics, 2022, 33(6): 1176–1189. doi: 10.23919/JSEE.2022.000141.
    [22]
    王钧. 成像卫星综合任务调度模型与优化方法研究[D]. [博士论文], 国防科学技术大学, 2007.

    WANG Jun. Research on modeling and optimization techniques in united mission scheduling of imaging satellites[D]. [Ph. D. dissertation], National University of Defense Technology, 2007.
    [23]
    EIBEN A E and SMITH J E. What is an evolutionary algorithm?[M]. EIBEN A E and SMITH J E. Introduction to Evolutionary Computing. 2nd ed. Berlin, Heidelberg: Springer, 2015: 25–48. doi: 10.1007/978-3-662-44874-8_3.
    [24]
    MLADENOVIĆ N and HANSEN P. Variable neighborhood search[J]. Computers & Operations Research, 1997, 24(11): 1097–1100. doi: 10.1016/S0305-0548(97)00031-2.
    [25]
    SONG Yanjie, OU Junwei, SUGANTHAN P N, et al. Learning adaptive genetic algorithm for earth electromagnetic satellite scheduling[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(6): 9010–9025. doi: 10.1109/TAES.2023.3312626.
    [26]
    PISINGER D and ROPKE S. Large neighborhood search[M]. GENDREAU M and POTVIN J Y. Handbook of Metaheuristics. 3rd ed. Cham: Springer, 2019: 99–127. doi: 10.1007/978-3-319-91086-4_4.
    [27]
    WU Jian, YAO Feng, SONG Yanjie, et al. Frequent pattern-based parallel search approach for time-dependent agile earth observation satellite scheduling[J]. Information Sciences, 2023, 636: 118924. doi: 10.1016/j.ins.2023.04.003.
    [28]
    LIU Zhehan, LIU Jinming, LIU Xiaolu, et al. Knowledge-assisted adaptive large neighbourhood search algorithm for the satellite–ground link scheduling problem[J]. Computers & Industrial Engineering, 2024, 192: 110219. doi: 10.1016/j.cie.2024.110219.
    [29]
    BORGELT C. An implementation of the FP-growth algorithm[C]. The 1st International Workshop on Open Source Data Mining: Frequent Pattern Mining Implementations, Chicago, USA, 2005: 1–5. doi: 10.1145/1133905.1133907.
    [30]
    CHEN Cheng, LI Lei, DU Yonghao, et al. A hybrid learning-assisted multi-parallel algorithm for a large-scale satellite-ground networking optimization problem[J/OL]. Frontiers of Engineering Management. https://doi.org/10.1007/s42524-025-4098-y, 2025.
    [31]
    CLIFTON J and LABER E. Q-learning: Theory and applications[J]. Annual Review of Statistics and Its Application, 2020, 7: 279–301. doi: 10.1146/annurev-statistics-031219-041220.
    [32]
    FAN Jianqing, WANG Zhaoran, XIE Yuchen, et al. A theoretical analysis of deep Q-learning[C]. The 2nd Annual Conference on Learning for Dynamics and Control, Berkeley, USA, 2020: 486–489.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(7)

    Article Metrics

    Article views (261) PDF downloads(58) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return