Citation: | DU Yonghao, LI Lei, XU Shilong, CHEN Ming, CHEN Yingguo. Evolutionary Optimization for Satellite Constellation Task Scheduling Based on Intelligent Optimization Engine[J]. Journal of Electronics & Information Technology, 2025, 47(6): 1645-1657. doi: 10.11999/JEIT240974 |
[1] |
KUENZER C, OTTINGER M, WEGMANN M, et al. Earth observation satellite sensors for biodiversity monitoring: Potentials and bottlenecks[J]. International Journal of Remote Sensing, 2014, 35(18): 6599–6647. doi: 10.1080/01431161.2014.964349.
|
[2] |
GUO Huadong. Understanding global natural disasters and the role of earth observation[J]. International Journal of Digital Earth, 2010, 3(3): 221–230. doi: 10.1080/17538947.2010.499662.
|
[3] |
阮启明, 谭跃进, 李菊芳, 等. 对地观测卫星的区域目标分割与优选问题研究[J]. 测绘科学, 2006, 31(1): 98–100. doi: 10.3771/j.issn.1009-2307.2006.01.034.
RUAN Qiming, TAN Yuejin, LI Jufang, et al. Research on segmenting and selecting of area targets[J]. Science of Surveying and Mapping, 2006, 31(1): 98–100. doi: 10.3771/j.issn.1009-2307.2006.01.034.
|
[4] |
耿远卓, 郭延宁, 李传江, 等. 敏捷凝视卫星密集点目标聚类与最优观测规划[J]. 控制与决策, 2020, 35(3): 613–621. doi: 10.13195/j.kzyjc.2018.0800.
GENG Yuanzhuo, GUO Yanning, LI Chuanjiang, et al. Optimal mission planning with task clustering for intensive point targets observation of staring mode agile satellite[J]. Control and Decision, 2020, 35(3): 613–621. doi: 10.13195/j.kzyjc.2018.0800.
|
[5] |
WANG Xinwei, WU Guohua, XING Lining, et al. Agile earth observation satellite scheduling over 20 years: Formulations, methods, and future directions[J]. IEEE Systems Journal, 2021, 15(3): 3881–3892. doi: 10.1109/jsyst.2020.2997050.
|
[6] |
SONG Yanjie, OU Junwei, PEDRYCZ W, et al. Generalized model and deep reinforcement learning-based evolutionary method for multitype satellite observation scheduling[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2024, 54(4): 2576–2589. doi: 10.1109/TSMC.2023.3345928.
|
[7] |
YAO Feng, DU Yonghao, LI Lei, et al. General modeling and optimization technique for real-world earth observation satellite scheduling[J]. Frontiers of Engineering Management, 2023, 10(4): 695–709. doi: 10.1007/s42524-023-0263-3.
|
[8] |
SONG Yanjie, WEI Luona, YANG Qing, et al. RL-GA: A reinforcement learning-based genetic algorithm for electromagnetic detection satellite scheduling problem[J]. Swarm and Evolutionary Computation, 2023, 77: 101236. doi: 10.1016/j.swevo.2023.101236.
|
[9] |
LI Lei, DU Yonghao, YAO Feng, et al. Learning memetic algorithm based on variable population and neighborhood for multi-complex target scheduling of large-scale imaging satellites[J]. Swarm and Evolutionary Computation, 2025, 92: 101789. doi: 10.1016/j.swevo.2024.101789.
|
[10] |
WU Jian, SONG Bingyu, ZHANG Guoting, et al. A data-driven improved genetic algorithm for agile earth observation satellite scheduling with time-dependent transition time[J]. Computers & Industrial Engineering, 2022, 174: 108823. doi: 10.1016/j.cie.2022.108823.
|
[11] |
DU Bin and LI Shuang. A new multi-satellite autonomous mission allocation and planning method[J]. Acta Astronautica, 2019, 163: 287–298. doi: 10.1016/j.actaastro.2018.11.001.
|
[12] |
ZHAO Yanbin, DU Bin, and LI Shuang. Agile satellite mission planning via task clustering and double-layer tabu algorithm[J]. Computer Modeling in Engineering & Sciences, 2020, 122(1): 235–257. doi: 10.32604/cmes.2020.08070.
|
[13] |
潘耀, 饶启龙, 池忠明, 等. 改进的遥感卫星成像任务单轨最优团划分聚类方法[J]. 上海航天, 2018, 35(3): 34–40. doi: 10.19328/j.cnki.1006-1630.2018.03.006.
PAN Yao, RAO Qilong, CHI Zhongming, et al. Improved clustering method of spot target based on best clique partition in single orbit for remote sensing satellite imaging[J]. Aerospace Shanghai, 2018, 35(3): 34–40. doi: 10.19328/j.cnki.1006-1630.2018.03.006.
|
[14] |
张聪, 袁利, 王云鹏, 等. 基于智能聚类的遥感卫星成像任务自主聚合方法[J]. 空间控制技术与应用, 2022, 48(5): 47–55. doi: 10.3969/j.issn.1674-1579.2022.05.006.
ZHANG Cong, YUAN Li, WANG Yunpeng, et al. Autonomous aggregation method for imaging tasks of observation satellite based on intelligent clustering[J]. Aerospace Control and Application, 2022, 48(5): 47–55. doi: 10.3969/j.issn.1674-1579.2022.05.006.
|
[15] |
LEMAÎTRE M, VERFAILLIE G, JOUHAUD F, et al. Selecting and scheduling observations of agile satellites[J]. Aerospace Science and Technology, 2002, 6(5): 367–381. doi: 10.1016/S1270-9638(02)01173-2.
|
[16] |
章登义, 郭雷, 王骞, 等. 一种面向区域目标的敏捷成像卫星单轨调度方法[J]. 武汉大学学报: 信息科学版, 2014, 39(8): 901–905. doi: 10.13203/j.whugis20130233.
ZHANG Dengyi, GUO Lei, WANG Qian, et al. An improved single-orbit scheduling method for agile imaging satellite towards area target[J]. Geomatics and Information Science of Wuhan University, 2014, 39(8): 901–905. doi: 10.13203/j.whugis20130233.
|
[17] |
余婧, 喜进军, 于龙江, 等. 敏捷卫星同轨多条带拼幅成像模式研究[J]. 航天器工程, 2015, 24(2): 27–34. doi: 10.3969/j.issn.1673-8748.2015.02.005.
YU Jing, XI Jinjun, YU Longjiang, et al. Study of one-orbit multi-stripes splicing imaging for agile satellite[J]. Spacecraft Engineering, 2015, 24(2): 27–34. doi: 10.3969/j.issn.1673-8748.2015.02.005.
|
[18] |
杨文沅, 贺仁杰, 耿西英智, 等. 面向区域目标的敏捷卫星非沿迹条带划分方法[J]. 科学技术与工程, 2016, 16(22): 82–87. doi: 10.3969/j.issn.1671-1815.2016.22.014.
YANG Wenyuan, HE Renjie, GENG Xiyingzhi, et al. Area target oriented non-along-with-track strip partitioning method for agile satellite[J]. Science Technology and Engineering, 2016, 16(22): 82–87. doi: 10.3969/j.issn.1671-1815.2016.22.014.
|
[19] |
LU Zezhong, SHEN Xin, LI Deren, et al. Multiple super-agile satellite collaborative mission planning for area target imaging[J]. International Journal of Applied Earth Observation and Geoinformation, 2023, 117: 103211. doi: 10.1016/j.jag.2023.103211.
|
[20] |
GU Yi, HAN Chao, CHEN Yuhan, et al. Large region targets observation scheduling by multiple satellites using resampling particle swarm optimization[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(2): 1800–1815. doi: 10.1109/TAES.2022.3205565.
|
[21] |
WU Jian, CHEN Yuning, HE Yongming, et al. Survey on autonomous task scheduling technology for Earth observation satellites[J]. Journal of Systems Engineering and Electronics, 2022, 33(6): 1176–1189. doi: 10.23919/JSEE.2022.000141.
|
[22] |
王钧. 成像卫星综合任务调度模型与优化方法研究[D]. [博士论文], 国防科学技术大学, 2007.
WANG Jun. Research on modeling and optimization techniques in united mission scheduling of imaging satellites[D]. [Ph. D. dissertation], National University of Defense Technology, 2007.
|
[23] |
EIBEN A E and SMITH J E. What is an evolutionary algorithm?[M]. EIBEN A E and SMITH J E. Introduction to Evolutionary Computing. 2nd ed. Berlin, Heidelberg: Springer, 2015: 25–48. doi: 10.1007/978-3-662-44874-8_3.
|
[24] |
MLADENOVIĆ N and HANSEN P. Variable neighborhood search[J]. Computers & Operations Research, 1997, 24(11): 1097–1100. doi: 10.1016/S0305-0548(97)00031-2.
|
[25] |
SONG Yanjie, OU Junwei, SUGANTHAN P N, et al. Learning adaptive genetic algorithm for earth electromagnetic satellite scheduling[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(6): 9010–9025. doi: 10.1109/TAES.2023.3312626.
|
[26] |
PISINGER D and ROPKE S. Large neighborhood search[M]. GENDREAU M and POTVIN J Y. Handbook of Metaheuristics. 3rd ed. Cham: Springer, 2019: 99–127. doi: 10.1007/978-3-319-91086-4_4.
|
[27] |
WU Jian, YAO Feng, SONG Yanjie, et al. Frequent pattern-based parallel search approach for time-dependent agile earth observation satellite scheduling[J]. Information Sciences, 2023, 636: 118924. doi: 10.1016/j.ins.2023.04.003.
|
[28] |
LIU Zhehan, LIU Jinming, LIU Xiaolu, et al. Knowledge-assisted adaptive large neighbourhood search algorithm for the satellite–ground link scheduling problem[J]. Computers & Industrial Engineering, 2024, 192: 110219. doi: 10.1016/j.cie.2024.110219.
|
[29] |
BORGELT C. An implementation of the FP-growth algorithm[C]. The 1st International Workshop on Open Source Data Mining: Frequent Pattern Mining Implementations, Chicago, USA, 2005: 1–5. doi: 10.1145/1133905.1133907.
|
[30] |
CHEN Cheng, LI Lei, DU Yonghao, et al. A hybrid learning-assisted multi-parallel algorithm for a large-scale satellite-ground networking optimization problem[J/OL]. Frontiers of Engineering Management. https://doi.org/10.1007/s42524-025-4098-y, 2025.
|
[31] |
CLIFTON J and LABER E. Q-learning: Theory and applications[J]. Annual Review of Statistics and Its Application, 2020, 7: 279–301. doi: 10.1146/annurev-statistics-031219-041220.
|
[32] |
FAN Jianqing, WANG Zhaoran, XIE Yuchen, et al. A theoretical analysis of deep Q-learning[C]. The 2nd Annual Conference on Learning for Dynamics and Control, Berkeley, USA, 2020: 486–489.
|