Citation: | NI Xue, ZENG HaiYu, YANG Wendong. Identification of Non-Line-Of-Sight Signals Based on Direct Path Signal Residual and Support Vector Data Description[J]. Journal of Electronics & Information Technology, 2025, 47(6): 1873-1884. doi: 10.11999/JEIT240960 |
[1] |
DARDARI D, CONTI A, FERNER U, et al. Win. Ranging with ultrawide bandwidth signals in multipath environments[J]. Proceedings of the IEEE, 2009, 97(2): 404–426. doi: 10.1109/JPROC.2008.2008846.
|
[2] |
SUWANSANTISUK W and WIN M Z. Multipath aided rapid acquisition: Optimal search strategies[J]. IEEE Transactions on Information Theory, 2007, 53(1): 174–193. doi: 10.1109/TIT.2006.887509.
|
[3] |
ZHANG Guolong, DENG Zhongliang, WEN Liu, et al. An UWB location algorithm for indoor NLOS environment[C]. 2018 Ubiquitous Positioning, Indoor Navigation and Location-Based Services, Wuhan, China, 2018: 1–6. doi: 10.1109/UPINLBS.2018.8559711.
|
[4] |
WANG Lei, CHEN Ruizhi, CHEN Liang, et al. A robust filter for TOA based indoor localization in mixed LOS/NLOS environment[C]. Ubiquitous Positioning, Indoor Navigation and Location-Based Services, Wuhan, China, 2018: 1–9. doi: 10.1109/UPINLBS.2018.8559862.
|
[5] |
邓锴. 基于NLOS识别和误差消除的无线定位算法研究[D]. [硕士论文], 西南交通大学, 2018.
DENG Kai. Research on wireless location algortihm based on NLOS identification and error mitigation[D]. [Master dissertation], Southwest Jiaotong University, 2018.
|
[6] |
FAN Zhibo, CHU Hao, WANG Fei, et al. A new non-line-of-sight localization algorithm for wireless sensor network[C]. 2020 IEEE 6th International Conference on Computer and Communications, Chengdu, China, 2020: 858–862. doi: 10.1109/ICCC51575.2020.9344936.
|
[7] |
YAN Leibing, LU Yin, and ZHANG Yerong. An improved NLOS identification and mitigation approach for target tracking in wireless sensor networks[J]. IEEE Access, 2017, 5: 2798–2807. doi: 10.1109/ACCESS.2017.2677480.
|
[8] |
ZHU Yuhong, MA tengfei, LI Zhijun, et al. NLOS identification and correction based on multidimensional scaling and quasi-accurate detection[J]. IEEE Access, 2019, 7: 53977–53987. doi: 10.1109/ACCESS.2019.2906866.
|
[9] |
DIAO Hongxue and ZHAO Junhui. CMD-based NLOS identification and mitigation in wireless sensor networks[C]. 2019 IEEE International Conference on Communications Workshops, Shanghai, China, 2019: 1–6. doi: 10.1109/ICCW.2019.8757187.
|
[10] |
MARANÒ S, GIFFORD W M, and WYMEERSCH H. NLOS identification and mitigation for localization based on UWB experimental data[J]. IEEE Journal on Selected Areas in Communications, 2010, 28(7): 1026–1035. doi: 10.1109/JSAC.2010.100907.
|
[11] |
WYMEERSCH H, MARANÒ S, GIFFORD W M, et al. A machine learning approach to ranging error mitigation for UWB localization[J]. IEEE Transactions on Communications, 2012, 60(6): 1719–1728. doi: 10.1109/TCOMM.2012.042712.110035.
|
[12] |
SUYKENS J A K and VANDEWALLE J. Least squares support vector machine classifiers[J]. Neural Processing Letters, 1999, 9(3): 293–300. doi: 10.1023/A:1018628609742.
|
[13] |
TIAN Shiwei, ZHAO Luwen, and LI Guangxia. A support vector data description approach to NLOS identification in UWB positioning[J]. Mathematical Problems in Engineering, 2014, 2014(1): 963418. doi: 10.1155/2014/963418.
|
[14] |
CUI Zhichao, LIU Tianwei, TIAN Shiwei, et al. Non-line-of-sight identification for UWB positioning using capsule networks[J]. IEEE Communications Letters, 2020, 24(10): 2187–2190. doi: 10.1109/LCOMM.2020.3003688. doi: 10.1109/LCOMM.2020.3003688.
|
[15] |
韦子辉, 解云龙, 王世昭, 等. 基于加权K-近邻分类的非视距识别方法研究[J]. 电子与信息学报, 2022, 44(8): 2842–2851. doi: 10.11999/JEIT210422.
WEI Zihui, XIE Yunlong, WANG Shizhao, et al. Research on non-line-of-sight recognition method based on weighted K-nearest neighbor classification[J] Journal of Electronics & Information Technology, 2022, 44(8): 2842–2851. doi: 10.11999/JEIT210422.
|
[16] |
吴绍华, 张钦宇, 张乃通. 密集多径环境下UWB测距的NLOS误差减小方法[J]. 电子学报, 2008, 36(1): 39–45. doi: 10.3321/j.issn:0372-2112.2008.01.007.
WU Shaohua, ZHANG Qinyu, and ZHANG Naitong. A NLOS error mitigation method for UWB ranging in dense multi-path environments[J]. Acat Electronica Sinica, 2008, 36(1): 39–45. doi: 10.3321/j.issn:0372-2112.2008.01.007.
|
[17] |
何建国. 超宽带室内非视距信号识别与定位研究[D]. [硕士论文], 重庆交通大学, 2024. doi: 10.27671/d.cnki.gcjtc.2024.000532.
HE Jianguo. Research on recognition and localization of ultra-wideband indoor non line of sight signals[D]. [Master dissertation], Chongqing Jiaotong University, 2024. doi: 10.27671/d.cnki.gcjtc.2024.000532.
|
[18] |
刘梦琦. 超宽带定位的NLOS识别及误差减小方法[D]. [硕士论文], 中国矿业大学, 2022. doi: 10.27623/d.cnki.gzkyu.2022.000217.
LIU Mengqi. NLOS Identification and mitigation in ultra-wideband positioning[D]. [Master dissertation], China University of Mining and Technology, 2022. doi: 10.27623/d.cnki.gzkyu.2022.000217.
|
[19] |
GÜVENÇ İ, CHONG C C, WATANABE F, et al. NLOS identification and weighted least-squares localization for UWB systems using multipath channel statistics[J]. EURASIP Journal on Advances in Signal Processing, 2007, 2008(1): 271984. doi: 10.1155/2008/271984.
|
[20] |
王晓慧, 王延江, 邓晓刚, 等. 基于加权深度支持向量数据描述的工业过程故障检测[J]. 化工学报, 2021, 72(11): 5707–5716. doi: 10.11949/0438-1157.20210707.
WANG Xiaohui, WANG Yanjiang, DENG Xiaogang, et al. Industrial process fault detection using weighted deep support vector data description[J]. CIESC Journal, 2021, 72(11): 5707–5716. doi: 10.11949/0438-1157.20210707.
|
[21] |
RUFF L, GÖRNITZ N, DEECKE L, et al. Deep one-class classification[C]. Proceedings of the 35th International Conference on Machine Learning, Stockholm, Sweden, 2018: 4390–4399.
|
[22] |
闫廷聚, 曹琰, 王依菁. 基于RFFAD_DeepSVDD的低功耗蓝牙欺骗攻击检测技术[J]. 计算机科学, 2025, 52(2): 380–387. doi: 10.11896/jsjkx.231200168.
|