Citation: | ZHANG Pengfei, AN Jianlong, CHENG Xiang, ZHANG Zhikun, SUN Li, ZHANG Ji, ZHU Yibo. Mixture Distribution-Based Truth Discovery Algorithm under Local Differential Privacy[J]. Journal of Electronics & Information Technology, 2025, 47(6): 1896-1910. doi: 10.11999/JEIT240936 |
[1] |
吕翊, 王燕, 崔亚平, 等. 考虑工人培养的移动群智感知任务分配机制[J]. 电子与信息学报, 2023, 45(4): 1505–1513. doi: 10.11999/JEIT220249.
LÜ Yi, WANG Yan, CUI Yaping, et al. Worker development-aware task allocation strategy in mobile crowd sensing[J]. Journal of Electronics & Information Technology, 2023, 45(4): 1505–1513. doi: 10.11999/JEIT220249.
|
[2] |
LIU Yutong, KONG Linghe, and CHEN Guihai. Data-oriented mobile crowdsensing: A comprehensive survey[J]. IEEE Communications Surveys & Tutorials, 2019, 21(3): 2849–2885. doi: 10.1109/COMST.2019.2910855.
|
[3] |
蒋伟进, 陈萍萍, 张婉清, 等. 基于组合多臂赌博机的移动群智感知用户招募算法[J]. 电子与信息学报, 2022, 44(3): 1119–1128. doi: 10.11999/JEIT210119.
JIANG Weijin, CHEN Pingping, ZHANG Wanqing, et al. Mobile crowdsensing user recruitment algorithm based on combination multi-armed bandit[J]. Journal of Electronics & Information Technology, 2022, 44(3): 1119–1128. doi: 10.11999/JEIT210119.
|
[4] |
ZHANG Daqing, WANG Leye, XIONG Haoyi, et al. 4W1H in mobile crowd sensing[J]. IEEE Communications Magazine, 2014, 52(8): 42–48. doi: 10.1109/MCOM.2014.6871668.
|
[5] |
熊金波, 毕仁万, 田有亮, 等. 移动群智感知安全与隐私: 模型、进展与趋势[J]. 计算机学报, 2021, 44(9): 1949–1966. doi: 10.11897/SP.J.1016.2021.01949.
XIONG Jinbo, BI Renwan, TIAN Youliang, et al. Security and privacy in mobile crowdsensing: Model, progresses, and trends[J]. Chinese Journal of Computers, 2021, 44(9): 1949–1966. doi: 10.11897/SP.J.1016.2021.01949.
|
[6] |
MA Huadong, ZHAO Dong, and YUAN Peiyan. Opportunities in mobile crowd sensing[J]. IEEE Communications Magazine, 2014, 52(8): 29–35. doi: 10.1109/MCOM.2014.6871666.
|
[7] |
FANG Xiu, SHEN Chenling, SHENG Q Z, et al. A multi-truth discovery approach based on confidence interval estimation of truths[C]. The 19th International Conference on Advanced Data Mining and Applications, Shenyang, China, 2023: 599–615. doi: 10.1007/978-3-031-46677-9_41.
|
[8] |
XIAO Houping and WANG Shiyu. A joint maximum likelihood estimation framework for truth discovery: A Unified Perspective[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(6): 5521–5533. doi: 10.1109/TKDE.2022.3173911.
|
[9] |
MO Wen, LI Zeyuan, ZENG Zhiwen, et al. SCTD: A spatiotemporal correlation truth discovery scheme for security management of data platform[J]. Future Generation Computer Systems, 2023, 139: 109–125. doi: 10.1016/j.future.2022.09.022.
|
[10] |
LIANG Tingxuan, CHEN Lingyi, HUANG Mingfeng, et al. RLTD: A reinforcement learning-based truth data discovery scheme for decision support systems under sustainable environments[J]. Applied Soft Computing, 2023, 143: 110369. doi: 10.1016/j.asoc.2023.110369.
|
[11] |
XIAN Youquan, LIU Peng, LI Dongcheng, et al. Safeguarding the truth of high-value price oracle task: A dynamically adjusted truth discovery method[J]. arXiv: 2402.02543, 2024.
|
[12] |
WANG Han, LIU Anfeng, XIONG N N, et al. TVD-RA: A truthful data value discovery-based reverse auction incentive system for mobile crowdsensing[J]. IEEE Internet of Things Journal, 2024, 11(4): 5826–5839. doi: 10.1109/JIOT.2023.3308072.
|
[13] |
KANG Yunchuan, LIU Anfeng, XIONG N N, et al. DTD: An intelligent data and bid dual truth discovery scheme for MCS in IIoT[J]. IEEE Internet of Things Journal, 2024, 11(2): 2507–2519. doi: 10.1109/JIOT.2023.3292920.
|
[14] |
LI Qi, LI Yaliang, GAO Jing, et al. Resolving conflicts in heterogeneous data by truth discovery and source reliability estimation[C]. 2014 ACM SIGMOD International Conference on Management of Data, Snowbird Utah, USA, 2014: 1187–1198. doi: 10.1145/2588555.2610509.
|
[15] |
ERLINGSSON Ú, PIHUR V, and KOROLOVA A. RAPPOR: Randomized aggregatable privacy-preserving ordinal response[C]. 2014 ACM SIGSAC Conference on Computer and Communications Security, Scottsdale Arizona, USA, 2014: 1054–1067. doi: 10.1145/2660267.2660348.
|
[16] |
TANG Jun, KOROLOVA A, BAI Xiaolong, et al. Privacy loss in apple’s implementation of differential privacy on MaCOS 10.12[J]. arXiv: 1709.02753, 2017.
|
[17] |
DING Bolin, KULKARNI J, and YEKHANIN S. Collecting telemetry data privately[C]. The 31st International Conference on Neural Information Processing Systems, Long Beach, USA, 2017: 3574–3583.
|
[18] |
HUSAIN H, BALLE B, CRANKO Z, et al. Local differential privacy for sampling[C]. The 23rd International Conference on Artificial Intelligence and Statistics, Palermo, Italy, 2020: 3404–3413.
|
[19] |
LIU Yuxian, LIU Fagui, WU Haotian, et al. RPTD: Reliability-enhanced privacy-preserving truth discovery for mobile crowdsensing[J]. Journal of Network and Computer Applications, 2022, 207: 103484. doi: 10.1016/j.jnca.2022.103484.
|
[20] |
TANG Jianchao, FU Shaojing, LIU Ximeng, et al. Achieving privacy-preserving and lightweight truth discovery in mobile crowdsensing (Extended abstract)[C]. The IEEE 39th International Conference on Data Engineering, Anaheim, USA, 2023: 3797–3798. doi: 10.1109/ICDE55515.2023.00325.
|
[21] |
CHENG Yudan, MA Jianfeng, LIU Zhiquan, et al. A privacy-preserving and reputation-based truth discovery framework in mobile crowdsensing[J]. IEEE Transactions on Dependable and Secure Computing, 2023, 20(6): 5293–5311. doi: 10.1109/TDSC.2023.3276976.
|
[22] |
LIU Xingting, ZHOU Siwang, ZHANG Wei, et al. Privacy-preserving truth discovery for collaborative-cloud encryption in mobile crowdsensing[J]. IEEE Systems Journal, 2023, 17(3): 4990–5001. doi: 10.1109/JSYST.2023.3274812.
|
[23] |
XIONG Ping, LI Guirong, LIU Hengzhu, et al. Decentralized privacy-preserving truth discovery for crowd sensing[J]. Information Sciences, 2023, 632: 730–741. doi: 10.1016/j.ins.2023.03.046.
|
[24] |
WANG Leye, FAN Guanghong, and HAN Xiao. Federated truth discovery for mobile crowdsensing with privacy-preserving trustworthiness assessment[J]. IEEE Data Engineering Bulletin, 2023, 46(1): 124–144.
|
[25] |
LIU Rui and PAN Jianping. Lightweight privacy-preserving truth discovery for vehicular air quality monitoring[J]. Digital Communications and Networks, 2023, 9(1): 280–291. doi: 10.1016/j.dcan.2022.03.021.
|
[26] |
AGATE V, FERRARO P, RE G L, et al. BLIND: A privacy preserving truth discovery system for mobile crowdsensing[J]. Journal of Network and Computer Applications, 2024, 223: 103811. doi: 10.1016/j.jnca.2023.103811.
|
[27] |
SUN Peng, WANG Zhibo, FENG Yunhe, et al. Towards personalized privacy-preserving incentive for truth discovery in crowdsourced binary-choice question answering[C]. The IEEE INFOCOM 2020-IEEE Conference on Computer Communications, Toronto, Canada, 2020: 1133–1142. doi: 10.1109/INFOCOM41043.2020.9155429.
|
[28] |
LI Yaliang, MIAO Chenglin, SU Lu, et al. An efficient two-layer mechanism for privacy-preserving truth discovery[C]. The 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, UK, 2018: 1705–1714. doi: 10.1145/3219819.3219998.
|
[29] |
WANG Di and XU Jinhui. Inferring ground truth from crowdsourced data under local attribute differential privacy[J]. Theoretical Computer Science, 2021, 865: 85–98. doi: 10.1016/j.tcs.2021.02.039.
|
[30] |
SUN Haipei, DONG Boxiang, WANG Hui, et al. Truth inference on sparse crowdsourcing data with local differential privacy[C]. 2018 IEEE International Conference on Big Data, Seattle, USA, 2018: 488–497. doi: 10.1109/BigData.2018.8622635.
|
[31] |
LI Yaliang, XIAO Houping, QIN Zhan, et al. Towards differentially private truth discovery for crowd sensing systems[C]. The 40th International Conference on Distributed Computing Systems, Singapore, 2020: 1156–1166. doi: 10.1109/ICDCS47774.2020.00037.
|
[32] |
SUN Peng, WANG Zhibo, WU Liantao, et al. Towards personalized privacy-preserving incentive for truth discovery in mobile crowdsensing systems[J]. IEEE Transactions on Mobile Computing, 2022, 21(1): 352–365. doi: 10.1109/TMC.2020.3003673.
|
[33] |
XU Guowen, LI Hongwei, XU Shengmin, et al. Catch you if you deceive me: Verifiable and privacy-aware truth discovery in crowdsensing systems[C]. The 15th ACM Asia Conference on Computer and Communications Security, Taipei, China, 2020: 178–192. doi: 10.1145/3320269.3384720.
|
[34] |
ZHANG Pengfei, CHENG Xiang, SU Sen, et al. PrivTDSI: A local differentially private approach for truth discovery via sampling and inference[J]. IEEE Transactions on Big Data, 2023, 9(2): 471–484. doi: 10.1109/TBDATA.2022.3186175.
|
[35] |
ZHANG Pengfei, CHENG Xiang, SU Sen, et al. Effective truth discovery under local differential privacy by leveraging noise-aware probabilistic estimation and fusion[J]. Knowledge-Based Systems, 2023, 261: 110213. doi: 10.1016/j.knosys.2022.110213.
|
[36] |
BUCKLEY C, LEASE M, SMUCKER M D, et al. Overview of the TREC 2010 relevance feedback track (notebook)[C]. The 19th Text Retrieval Conference (TREC) Notebook, Gaithersburg, USA, 2010.
|
[37] |
XU Guowen, LI Hongwei, LIU Sen, et al. Efficient and privacy-preserving truth discovery in mobile crowd sensing systems[J]. IEEE Transactions on Vehicular Technology, 2019, 68(4): 3854–3865. doi: 10.1109/TVT.2019.2895834.
|