Citation: | FANG Xianjin, JIANG Xuefeng, XU Liuquan, FANG Zhongyi. CFS-YOLO: An Early Fire Detection Method via Coarse and Fine Grain Search and Focus Modulation[J]. Journal of Electronics & Information Technology, 2025, 47(6): 1976-1991. doi: 10.11999/JEIT240928 |
[1] |
CHEN Yute and HWANG J K. A power-line-based sensor network for proactive electrical fire precaution and early discovery[J]. IEEE Transactions on Power Delivery, 2008, 23(2): 633–639. doi: 10.1109/TPWRD.2008.917945.
|
[2] |
SRIDHAR P, THANGAVEL S K, PARAMESWARAN L, et al. Fire sensor and surveillance camera-based GTCNN for fire detection system[J]. IEEE Sensors Journal, 2023, 23(7): 7626–7633. doi: 10.1109/JSEN.2023.3244833.
|
[3] |
李倩, 岳亮. 吸气式感烟火灾探测器设计改进研究[J]. 消防科学与技术, 2021, 40(11): 1644–1647. doi: 10.3969/j.issn.1009-0029.2021.11.018.
LI Qian and YUE Liang. Research on design improvement of aspirating smoke detector[J]. Fire Science and Technology, 2021, 40(11): 1644–1647. doi: 10.3969/j.issn.1009-0029.2021.11.018.
|
[4] |
WANG Yong, HAN Yu, TANG Zhaojia, et al. A fast video fire detection of irregular burning feature in fire-flame using in indoor fire sensing robots[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 7505414. doi: 10.1109/TIM.2022.3212986.
|
[5] |
CHAOXIA Chenyu, SHANG Weiwei, ZHANG Fei, et al. Weakly aligned multimodal flame detection for fire-fighting robots[J]. IEEE Transactions on Industrial Informatics, 2023, 19(3): 2866–2875. doi: 10.1109/TII.2022.3158668.
|
[6] |
BUSHNAQ O M, CHAABAN A, and AL-NAFFOURI T Y. The role of UAV-IoT networks in future wildfire detection[J]. IEEE Internet of Things Journal, 2021, 8(23): 16984–16999. doi: 10.1109/JIOT.2021.3077593.
|
[7] |
GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]. 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 580–587. doi: 10.1109/CVPR.2014.81.
|
[8] |
GIRSHICK R. Fast R-CNN[C]. 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 1440–1448. doi: 10.1109/ICCV.2015.169.
|
[9] |
REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137–1149. doi: 10.1109/TPAMI.2016.2577031.
|
[10] |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 779–788. doi: 10.1109/CVPR.2016.91.
|
[11] |
LIU Wei, ANGUELOV D, ERHAN D, et al. SSD: Single shot MultiBox detector[C]. The 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 21–37. doi: 10.1007/978-3-319-46448-0_2.
|
[12] |
CHAN A B and VASCONCELOS N. Modeling, clustering, and segmenting video with mixtures of dynamic textures[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(5): 909–926. doi: 10.1109/TPAMI.2007.70738.
|
[13] |
CHAKRABORTY I and PAUL T K. A hybrid clustering algorithm for fire detection in video and analysis with color based thresholding method[C]. The 2010 International Conference on Advances in Computer Engineering, Bangalore, India, 2010: 277–280. doi: 10.1109/ACE.2010.12.
|
[14] |
WANG Yijun. Simulation study of fuzzy neural control fire alarm system based on clustering algorithm[C]. The 2022 2nd International Conference on Algorithms, High Performance Computing and Artificial Intelligence, Guangzhou, China, 2022: 217–221. doi: 10.1109/AHPCAI57455.2022.10087561.
|
[15] |
DIMITROPOULOS K, BARMPOUTIS P, and GRAMMALIDIS N. Spatio-temporal flame modeling and dynamic texture analysis for automatic video-based fire detection[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2015, 25(2): 339–351. doi: 10.1109/TCSVT.2014.2339592.
|
[16] |
ASIH L C, STHEVANIE F, and RAMADHANI K N. Visual based fire detection system using speeded up robust feature and support vector machine[C]. The 2018 6th International Conference on Information and Communication Technology, Bandung, Indonesia, 2018: 485–488. doi: 10.1109/ICoICT.2018.8528752.
|
[17] |
YAR H, HUSSAIN T, AGARWAL M, et al. Optimized dual fire attention network and medium-scale fire classification benchmark[J]. IEEE Transactions on Image Processing, 2022, 31: 6331–6343. doi: 10.1109/TIP.2022.3207006.
|
[18] |
MUHAMMAD K, AHMAD J, LV Zhihan, et al. Efficient deep CNN-based fire detection and localization in video surveillance applications[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 49(7): 1419–1434. doi: 10.1109/TSMC.2018.2830099.
|
[19] |
LI Changdi, LI Guangye, SONG Yichen, et al. Fast forest fire detection and segmentation application for UAV-assisted mobile edge computing system[J]. IEEE Internet of Things Journal, 2024, 11(16): 26690–26699. doi: 10.1109/JIOT.2023.3311950.
|
[20] |
MUHAMMAD K, KHAN S, ELHOSENY M, et al. Efficient fire detection for uncertain surveillance environment[J]. IEEE Transactions on Industrial Informatics, 2019, 15(5): 3113–3122. doi: 10.1109/TII.2019.2897594.
|
[21] |
HUANG Lida, LIU Gang, WANG Yan, et al. Fire detection in video surveillances using convolutional neural networks and wavelet transform[J]. Engineering Applications of Artificial Intelligence, 2022, 110: 104737. doi: 10.1016/j.engappai.2022.104737.
|
[22] |
ZHANG Lin, WANG Mingyang, DING Yunhong, et al. MS-FRCNN: A multi-scale faster RCNN model for small target forest fire detection[J]. Forests, 2023, 14(3): 616. doi: 10.3390/f14030616.
|
[23] |
CHAOXIA Chenyu, SHANG Weiwei, and ZHANG Fei. Information-guided flame detection based on faster R-CNN[J]. IEEE Access, 2020, 8: 58923–58932. doi: 10.1109/ACCESS.2020.2982994.
|
[24] |
CHEKNANE M, BENDOUMA T, and BOUDOUH S S. Advancing fire detection: Two-stage deep learning with hybrid feature extraction using faster R-CNN approach[J]. Signal, Image and Video Processing, 2024, 18(6): 5503–5510. doi: 10.1007/s11760-024-03250-w.
|
[25] |
赵杰, 汪洪法, 吴凯. 基于特征增强及多层次融合的火灾火焰检测[J]. 中国安全生产科学技术, 2024, 20(1): 93–99. doi: 10.11731/j.issn.1673-193x.2024.01.014.
ZHAO Jie, WANG Hongfa, and WU Kai. Fire flame detection based on feature enhancement and multi-level fusion[J]. Journal of Safety Science and Technology, 2024, 20(1): 93–99. doi: 10.11731/j.issn.1673-193x.2024.01.014.
|
[26] |
REN Dong, ZHANG Yang, WANG Lu, et al. FCLGYOLO: Feature constraint and local guided global feature for fire detection in unmanned aerial vehicle imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 5864–5875. doi: 10.1109/JSTARS.2024.3358544.
|
[27] |
QADIR Z, LE K, BAO V N Q, et al. Deep learning-based intelligent post-bushfire detection using UAVs[J]. IEEE Geoscience and Remote Sensing Letters, 2024, 21: 5000605. doi: 10.1109/LGRS.2023.3329509.
|
[28] |
邓力, 周进, 刘全义. 基于改进YOLOv8的火焰与烟雾检测算法[J/OL]. 清华大学学报: 自然科学版: 1–9. https://doi.org/10.16511/j.cnki.qhdxxb.2024.27.036, 2024.
DENG Li, ZHOU Jin, and LIU Quanyi. Fire and smoke detection algorithm based on improved YOLOv8[J/OL]. Jouranl of Tsinghua University: Science and Technology: 1–9. https://doi.org/10.16511/j.cnki.qhdxxb.2024.27.036, 2024.
|
[29] |
WANG Guanbo, LI Haiyan, SHENG V, et al. DPMNet: A remote sensing forest fire real-time detection network driven by dual pathways and multidimensional interactions of features[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2025, 35(1): 783–799. doi: 10.1109/TCSVT.2024.3462432.
|
[30] |
PATEL A N, SRIVASTAVA G, MADDIKUNTA P K R, et al. A trustable federated learning framework for rapid fire smoke detection at the edge in smart home environments[J]. IEEE Internet of Things Journal, 2024, 11(23): 37708–37717. doi: 10.1109/JIOT.2024.3439228.
|
[31] |
曹康壮, 焦双健. 融合注意力机制的轻量级火灾检测模型[J]. 消防科学与技术, 2024, 43(3): 378–383. doi: 10.3969/j.issn.1009-0029.2024.03.017.
CAO Kangzhuang and JIAO Shuangjian. A lightweight fire detection model integrating attention mechanism[J]. Fire Science and Technology, 2024, 43(3): 378–383. doi: 10.3969/j.issn.1009-0029.2024.03.017.
|
[32] |
LI Songbin, YAN Qiandong, and LIU Peng. An efficient fire detection method based on multiscale feature extraction, implicit deep supervision and channel attention mechanism[J]. IEEE Transactions on Image Processing, 2020, 29: 8467–8475. doi: 10.1109/TIP.2020.3016431.
|
[33] |
ALMEIDA J S, HUANG Chenxi, NOGUEIRA F G, et al. EdgeFireSmoke: A novel lightweight CNN model for real-time video fire–smoke detection[J]. IEEE Transactions on Industrial Informatics, 2022, 18(11): 7889–7898. doi: 10.1109/TII.2021.3138752.
|
[34] |
ZHENG Zhaohui, WANG Ping, LIU Wei, et al. Distance-IoU loss: Faster and better learning for bounding box regression[C]. The 34th AAAI Conference on Artificial Intelligence, New York, USA, 2020: 12993–13000. doi: 10.1609/aaai.v34i07.6999.
|
[35] |
ZHANG Hao and ZHANG Shuaijie. Shape-IoU: More accurate metric considering bounding box shape and scale[EB/OL]. https://doi.org/10.48550/arXiv.2312.17663, 2023.
|
[36] |
ZHU Xizhou, SU Weijie, LU Lewei, et al. Deformable DETR: Deformable transformers for end-to-end object detection[C]. The Ninth International Conference on Learning Representations, Vienna, Austria, 2021: 3448.
|
[37] |
REDMON J and FARHADI A. YOLOv3: An incremental improvement[EB/OL]. https://doi.org/10.48550/arXiv.1804.02767, 2018.
|
[38] |
JOCHER G, STOKEN A, BOROVEC J, et al. ultralytics/yolov5: v5.0 - YOLOv5-P6 1280 models, AWS, supervise. ly and YouTube integrations[EB/OL]. https://zenodo.org/record/4679653, 2021.
|
[39] |
VARGHESE R and M S. YOLOv8: A novel object detection algorithm with enhanced performance and robustness[C]. 2024 International Conference on Advances in Data Engineering and Intelligent Computing Systems, Chennai, India, 2024: 1–6. doi: 10.1109/ADICS58448.2024.10533619.
|
[40] |
HOWARD A G, ZHU Menglong, CHEN Bo, et al. MobileNets: Efficient convolutional neural networks for mobile vision applications[EB/OL]. https://doi.org/10.48550/arXiv.1704.04861, 2017.
|
[41] |
IANDOLA F N, HAN Song, MOSKEWICZ M W, et al. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size[EB/OL]. https://doi.org/10.48550/arXiv.1602.07360, 2016.
|
[42] |
KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84–90. doi: 10.1145/3065386.
|
[43] |
SZEGEDY C, LIU Wei, JIA Yangqing, et al. Going deeper with convolutions[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 1–9. doi: 10.1109/CVPR.2015.7298594.
|
[44] |
HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778. doi: 10.1109/CVPR.2016.90.
|
[45] |
DHIMAN A, SHAH N, ADHIKARI P, et al. Firefighting robot with deep learning and machine vision[J]. Neural Computing and Applications, 2022, 34(4): 2831–2839. doi: 10.1007/s00521-021-06537-y.
|
[46] |
YUN Bensheng, ZHENG Yanan, LIN Zhenyu, et al. FFYOLO: A lightweight forest fire detection model based on YOLOv8[J]. Fire, 2024, 7(3): 93. doi: 10.3390/fire7030093.
|
[47] |
HAN Yuhang, DUAN Bingchen, GUAN Renxiang, et al. LUFFD-YOLO: A lightweight model for UAV remote sensing forest fire detection based on attention mechanism and multi-level feature fusion[J]. Remote Sensing, 2024, 16(12): 2177. doi: 10.3390/rs16122177.
|
[48] |
LUAN Tian, ZHOU Shixiong, LIU Lifeng, et al. Tiny-object detection based on optimized YOLO-CSQ for accurate drone detection in wildfire scenarios[J]. Drones, 2024, 8(9): 454. doi: 10.3390/drones8090454.
|