Citation: | WU Yifan, HUANG Lijia, YAN Chaobao, ZHANG Bingchen. A Moving Target Detection Method for GEO SAR Image in Maritime Areas[J]. Journal of Electronics & Information Technology, 2025, 47(6): 1723-1733. doi: 10.11999/JEIT240906 |
[1] |
林晨晨, 李光廷, 孙娟, 等. 陆探四号01星微波通道在轨自主相位补偿方法[J]. 空间电子技术, 2024, 21(2): 17–22. doi: 10.3969/j.issn.1674-7135.2024.02.002.
LIN Chenchen, LI Guangting, SUN Juan, et al. On-orbit autonomously phase compensation method for microwave channels of LT-4 (01)[J]. Space Electronic Technology, 2024, 21(2): 17–22. doi: 10.3969/j.issn.1674-7135.2024.02.002.
|
[2] |
BRUNO D, HOBBS S E, and OTTAVIANELLI G. Geosynchronous synthetic aperture radar: Concept design, properties and possible applications[J]. Acta Astronautica, 2006, 59(1/5): 149–156. doi: 10.1016/j.actaastro.2006.02.005.
|
[3] |
聂娟, 邓磊, 郝向磊, 等. 高分四号卫星在干旱遥感监测中的应用[J]. 遥感学报, 2018, 22(3): 400–407. doi: 10.11834/jrs.20187067.
NIE Juan, DENG Lei, HAO Xianglei, et al. Application of GF-4 satellite in drought remote sensing monitoring: A case study of Southeastern Inner Mongolia[J]. Journal of Remote Sensing, 2018, 22(3): 400–407. doi: 10.11834/jrs.20187067.
|
[4] |
胡哲颖, 黄丽佳, 胡文龙, 等. 高轨SAR非平直几何动目标成像影响建模[J]. 雷达科学与技术, 2018, 16(5): 496–504. doi: 10.3969/j.issn.1672-2337.2018.05.006.
HU Zheying, HUANG Lijia, HU Wenlong, et al. Modeling and analysis of target motion influence on GEO SAR based on non-straight squint imaging geometry[J]. Radar Science and Technology, 2018, 16(5): 496–504. doi: 10.3969/j.issn.1672-2337.2018.05.006.
|
[5] |
WANG Chao, GUO Baolong, SONG Jiawei, et al. A novel CFAR-based ship detection method using range-compressed data for spaceborne SAR system[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5215515. doi: 10.1109/TGRS.2024.3419893.
|
[6] |
ZHOU Wei, XIE Junhao, LI Gaopeng, et al. Robust CFAR detector with weighted amplitude iteration in nonhomogeneous sea clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(3): 1520–1535. doi: 10.1109/TAES.2017.2671798.
|
[7] |
SHI Sainan and SHUI Penglang. Sea-surface floating small target detection by one-class classifier in time-frequency feature space[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(11): 6395–6411. doi: 10.1109/TGRS.2018.2838260.
|
[8] |
SHUI Penglang, LI Dongchen, and XU Shuwen. Tri-feature-based detection of floating small targets in sea clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(2): 1416–1430. doi: 10.1109/TAES.2014.120657.
|
[9] |
ZHAO Chunhui, LIU Haodong, WANG Lu, et al. SAR image wake detection based on pseudo-Siamese structure and multidomain feature fusion[J]. IEEE Geoscience and Remote Sensing Letters, 2024, 21: 4015605. doi: 10.1109/LGRS.2024.3436855.
|
[10] |
GUAN Yanan, XU Huaping, and LI Chunsheng. A method of ship wake detection in SAR images based on reconstruction features and anomaly detector[C]. 2023 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, USA, 2023. doi: 10.1109/IGARSS52108.2023.10281571.
|
[11] |
DENG Jie, WANG Wei, ZHANG Huiqiang, et al. PolSAR ship detection based on superpixel-level contrast enhancement[J]. IEEE Geoscience and Remote Sensing Letters, 2024, 21: 4008805. doi: 10.1109/LGRS.2024.3388989.
|
[12] |
ZHANG Tao, QUAN Sinong, YANG Zhen, et al. A two-stage method for ship detection using PolSAR image[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 52369818. doi: 10.1109/TGRS.2022.3216532.
|
[13] |
LI Jianwei, CHEN Jie, CHENG Pu, et al. A survey on deep-learning-based real-time SAR ship detection[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16: 3218–3247. doi: 10.1109/JSTARS.2023.3244616.
|
[14] |
LI Dong, LIANG Quanhuan, LIU Hongqing, et al. A novel multidimensional domain deep learning network for SAR ship detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5203213. doi: 10.1109/TGRS.2021.3062038.
|
[15] |
ZHU Xiaoxiang, MONTAZERI S, ALI M, et al. Deep Learning Meets SAR: Concepts, models, pitfalls, and perspectives[J]. IEEE Geoscience and Remote Sensing Magazine, 2021, 9(4): 143–172. doi: 10.1109/MGRS.2020.3046356.
|
[16] |
GRECO M, STINCO P, and GINI F. Identification and analysis of sea radar clutter spikes[J]. IET Radar, Sonar & Navigation, 2010, 4(2): 239–250. doi: 10.1049/iet-rsn.2009.0088.
|
[17] |
GREGERS-HANSEN V and MITAL R. An improved empirical model for radar sea clutter reflectivity[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(4): 3512–3524. doi: 10.1109/TAES.2012.6324732.
|
[18] |
HO J, JAIN A, and ABBEEL P. Denoising diffusion probabilistic models[C]. The 34th International Conference on Neural Information Processing Systems, Vancouver, Canada, 2020: 574.
|
[19] |
YU Shuang, XIAO Di, FROST S, et al. Robust optic disc and cup segmentation with deep learning for glaucoma detection[J]. Computerized Medical Imaging and Graphics, 2019, 74: 61–71. doi: 10.1016/j.compmedimag.2019.02.005.
|
[20] |
NICHOL A Q and DHARIWAL P. Improved denoising diffusion probabilistic models[C/OL]. The 38th International Conference on Machine Learning, 2021: 8162–8171.
|
[21] |
CHEN Jianlai, SUN Guangcai, XING Mengdao, et al. A two-dimensional beam-steering method to simultaneously consider Doppler centroid and ground observation in GEOSAR[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(1): 161–167. doi: 10.1109/JSTARS.2016.2544349.
|