Citation: | SUN Wenbo, GAO Zhi, ZHANG Yichen, ZHU Jun, Li Yanzhang, LU Yao. Geometrically Consistent Based Neural Radiance Field for Satellite City Scene Rendering and Digital Surface Model Generation in Sparse Viewpoints[J]. Journal of Electronics & Information Technology, 2025, 47(6): 1679-1689. doi: 10.11999/JEIT240898 |
[1] |
MILDENHALL B, SRINIVASAN P P, TANCIK M, et al. NeRF: Representing scenes as neural radiance fields for view synthesis[J]. Communications of the ACM, 2021, 65(1): 99–106. doi: 10.1145/3503250.
|
[2] |
DERKSEN D and IZZO D. Shadow neural radiance fields for multi-view satellite photogrammetry[C]. The IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 1152–1161. doi: 10.1109/CVPRW53098.2021.00126.
|
[3] |
MARÍ R, FACCIOLO G, and EHRET T. Sat-NeRF: Learning multi-view satellite photogrammetry with transient objects and shadow modeling using rpc cameras[C]. The IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 1310–1320. doi: 10.1109/CVPRW56347.2022.00137.
|
[4] |
LE SAUX B, YOKOYA N, HANSCH R, et al. 2019 Data fusion contest [technical committees][J]. IEEE Geoscience and Remote Sensing Magazine, 2019, 7(1): 103–105. doi: 10.1109/MGRS.2019.2893783.
|
[5] |
TANCIK M, MILDENHALL B, WANG T, et al. Learned initializations for optimizing coordinate-based neural representations[C]. The IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 2846–2855. doi: 10.1109/CVPR46437.2021.00287.
|
[6] |
JAIN A, TANCIK M, and ABBEEL P. Putting NeRF on a diet: Semantically consistent few-shot view synthesis[C]. The IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 5865–5874. doi: 10.1109/ICCV48922.2021.00583.
|
[7] |
HIRSCHMULLER H. Accurate and efficient stereo processing by semi-global matching and mutual information[C]. The IEEE/CVF Conference on Computer Vision and Pattern Recognition, San Diego, USA, 2005: 807–814. doi: 10.1109/CVPR.2005.56.
|
[8] |
D'ANGELO P and KUSCHK G. Dense multi-view stereo from satellite imagery[C]. Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 2012: 6944–6947. doi: 10.1109/IGARSS.2012.6352565.
|
[9] |
BEYER R A, ALEXANDROV O, and MCMICHAEL S. The ames stereo pipeline: NASA’s open source software for deriving and processing terrain data[J]. Earth and Space Science, 2018, 5(9): 537–548. doi: 10.1029/2018EA000409.
|
[10] |
DE FRANCHIS C, MEINHARDT-LLOPIS E, MICHEL J, et al. An automatic and modular stereo pipeline for pushbroom images[C]. The ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Zürich, Switzerland, 2014: 49–56. doi: 10.5194/isprsannals-ii-3-49-2014.
|
[11] |
GONG K and FRITSCH D. DSM generation from high resolution multi-view stereo satellite imagery[J]. Photogrammetric Engineering & Remote Sensing, 2019, 85(5): 379–387. doi: 10.14358/PERS.85.5.379.
|
[12] |
HIRSCHMULLER H. Stereo processing by semiglobal matching and mutual information[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(2): 328–341. doi: 10.1109/TPAMI.2007.1166.
|
[13] |
YAO Yao, LUO Zixin, LI Shiwei, et al. MVSNet: Depth inference for unstructured multi-view stereo[C]. The 15th European Conference on Computer Vision, Munich, Germany, 2018: 785–801. doi: 10.1007/978-3-030-01237-3_47.
|
[14] |
GU Xiaodong, FAN Zhiwen, ZHU Siyu, et al. Cascade cost volume for high-resolution multi-view stereo and stereo matching[C]. The IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 2492–2501. doi: 10.1109/CVPR42600.2020.00257.
|
[15] |
CHENG Shuo, XU Zexiang, ZHU Shilin, et al. Deep stereo using adaptive thin volume representation with uncertainty awareness[C]. The IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 2521–2531. doi: 10.1109/CVPR42600.2020.00260.
|
[16] |
YANG Jiayu, MAO Wei, ALVAREZ J M, et al. Cost volume pyramid based depth inference for multi-view stereo[C]. The IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 4876–4885. doi: 10.1109/CVPR42600.2020.00493.
|
[17] |
GAO Jian, LIU Jin, and JI Shunping. A general deep learning based framework for 3D reconstruction from multi-view stereo satellite images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2023, 195: 446–461. doi: 10.1016/j.isprsjprs.2022.12.012.
|
[18] |
MARÍ R, FACCIOLO G, and EHRET T. Multi-date earth observation NeRF: The detail is in the shadows[C]. The IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023: 2035–2045. doi: 10.1109/CVPRW59228.2023.00197.
|
[19] |
SUN Wenbo, LU Yao, ZHANG Yichen, et al. Neural radiance fields for multi-view satellite photogrammetry leveraging intrinsic decomposition[C]. The IEEE International Geoscience and Remote Sensing Symposium, Athens, Greece, 2024: 4631–4635. doi: 10.1109/IGARSS53475.2024.10641455.
|
[20] |
YU A, YE V, TANCIK M, et al. pixelNeRF: Neural radiance fields from one or few images[C]. The IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 4576–4585. doi: 10.1109/CVPR46437.2021.00455.
|
[21] |
DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[C]. Proceedings of the 9th International Conference on Learning Representations, 2021.
|
[22] |
XU Dejia, JIANG Yifan, WANG Peihao, et al. SinNeRF: Training neural radiance fields on complex scenes from a single image[C]. The 17th European Conference on Computer Vision, Tel Aviv, Israel, 2022: 736–753. doi: 10.1007/978-3-031-20047-2_42.
|
[23] |
AMIR S, GANDELSMAN Y, BAGON S, et al. Deep vit features as dense visual descriptors[J]. arXiv preprint arXiv: 2112.05814, 2021.
|
[24] |
DENG Kangle, LIU A, ZHU Junyan, et al. Depth-supervised NeRF: Fewer views and faster training for free[C]. The IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 12872–12881. doi: 10.1109/CVPR52688.2022.01254.
|
[25] |
TRUONG P, RAKOTOSAONA M J, MANHARDT F, et al. SPARF: Neural radiance fields from sparse and noisy poses[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023: 4190–4200. doi: 10.1109/CVPR52729.2023.00408.
|
[26] |
WANG Guangcong, CHEN Zhaoxi, LOY C C, et al. SparseNeRF: Distilling depth ranking for few-shot novel view synthesis[C]. The IEEE/CVF International Conference on Computer Vision, Paris, France, 2023: 9031–9042. doi: 10.1109/ICCV51070.2023.00832.
|
[27] |
SHI Ruoxi, WEI Xinyue, WANG Cheng, et al. ZeroRF: Fast sparse view 360° reconstruction with zero pretraining[C]. The IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2024: 21114–21124. doi: 10.1109/CVPR52733.2024.01995.
|
[28] |
ZHANG Lulin and RUPNIK E. SparseSat-NeRF: Dense depth supervised neural radiance fields for sparse satellite images[J]. arXiv preprint arXiv: 2309.00277, 2023.
|
[29] |
FACCIOLO G, DE FRANCHIS C, and MEINHARDT-LLOPIS E. Automatic 3D reconstruction from multi-date satellite images[C]. The IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, USA, 2017: 1542–1551. doi: 10.1109/CVPRW.2017.198.
|
[30] |
DENG Jia, DONG Wei, SOCHER R, et al. ImageNet: A large-scale hierarchical image database[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Miami, USA, 2009: 248–255. doi: 10.1109/CVPR.2009.5206848.
|