Citation: | MA Jiayi, XIANG Xinyu, YAN Qinglong, ZHANG Hao, HUANG Jun, MA Yong. Patch-based Adversarial Example Generation Method for Multi-spectral Object Tracking[J]. Journal of Electronics & Information Technology, 2025, 47(6): 1623-1632. doi: 10.11999/JEIT240891 |
[1] |
卢湖川, 李佩霞, 王栋. 目标跟踪算法综述[J]. 模式识别与人工智能, 2018, 31(1): 61–67. doi: 10.16451/j.cnki.issn1003-6059.201801006.
LU Huchuan, LI Peixia, and WANG Dong. Visual object tracking: A survey[J]. Pattern Recognition and Artificial Intelligence, 2018, 31(1): 61–67. doi: 10.16451/j.cnki.issn1003-6059.201801006.
|
[2] |
SZEGEDY C, ZAREMBA W, SUTSKEVER I, et al. Intriguing properties of neural networks[C]. The 2nd International Conference on Learning Representations, Banff, Canada, 2014.
|
[3] |
潘文雯, 王新宇, 宋明黎, 等. 对抗样本生成技术综述[J]. 软件学报, 2020, 31(1): 67–81. doi: 10.13328/j.cnki.jos.005884.
PAN Wenwen, WANG Xinyu, SONG Mingli, et al. Survey on generating adversarial examples[J]. Journal of Software, 2020, 31(1): 67–81. doi: 10.13328/j.cnki.jos.005884.
|
[4] |
JIA Shuai, MA Chao, SONG Yibing, et al. Robust tracking against adversarial attacks[C]. The 16th European Conference on Computer Vision, Glasgow, UK, 2020: 69–84. doi: 10.1007/978-3-030-58529-7_5.
|
[5] |
CHEN Fei, WANG Xiaodong, ZHAO Yunxiang, et al. Visual object tracking: A survey[J]. Computer Vision and Image Understanding, 2022, 222: 103508. doi: 10.1016/j.cviu.2022.103508.
|
[6] |
CHEN Xuesong, FU Canmiao, ZHENG Feng, et al. A unified multi-scenario attacking network for visual object tracking[C]. The 35th AAAI Conference on Artificial Intelligence, Vancouver, Canada, 2021: 1097–1104. doi: 10.1609/aaai.v35i2.16195.
|
[7] |
YAN Bin, PENG Houwen, FU Jianlong, et al. Learning spatio-temporal transformer for visual tracking[C]. 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 10428–10437. doi: 10.1109/ICCV48922.2021.01028.
|
[8] |
TANG Chuanming, WANG Xiao, BAI Yuanchao, et al. Learning spatial-frequency transformer for visual object tracking[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33(9): 5102–5116. doi: 10.1109/TCSVT.2023.3249468.
|
[9] |
LI Bo, YAN Junjie, WU Wei, et al. High performance visual tracking with Siamese region proposal network[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 8971–8980. doi: 10.1109/CVPR.2018.00935.
|
[10] |
HU Weiming, WANG Qiang, ZHANG Li, et al. SiamMask: A framework for fast online object tracking and segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(3): 3072–3089. doi: 10.1109/TPAMI.2022.3172932.
|
[11] |
LIN Liting, FAN Heng, ZHANG Zhipeng, et al. SwinTrack: A simple and strong baseline for transformer tracking[C]. The 36th International Conference on Neural Information Processing Systems, New Orleans, USA, 2022: 1218. doi: 10.5555/3600270.3601488.
|
[12] |
LIN Xixun, ZHOU Chuan, WU Jia, et al. Exploratory adversarial attacks on graph neural networks for semi-supervised node classification[J]. Pattern Recognition, 2023, 133: 109042. doi: 10.1016/j.patcog.2022.109042.
|
[13] |
HUANG Hao, CHEN Ziyan, CHEN Huanran, et al. T-SEA: Transfer-based self-ensemble attack on object detection[C]. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023: 20514–20523. doi: 10.1109/CVPR52729.2023.01965.
|
[14] |
JIA Shuai, SONG Yibing, MA Chao, et al. IoU attack: Towards temporally coherent black-box adversarial attack for visual object tracking[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 6705–6714. doi: 10.1109/CVPR46437.2021.00664.
|
[15] |
DING Li, WANG Yongwei, YUAN Kaiwen, et al. Towards universal physical attacks on single object tracking[C]. The 35th AAAI Conference on Artificial Intelligence, Vancouver, Canada, 2021: 1236–1245. doi: 10.1609/aaai.v35i2.16211.
|
[16] |
HUANG Xingsen, MIAO Deshui, WANG Hongpeng, et al. Context-guided black-box attack for visual tracking[J]. IEEE Transactions on Multimedia, 2024, 26: 8824–8835. doi: 10.1109/TMM.2024.3382473.
|
[17] |
GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Communications of the ACM, 2020, 63(11): 139–144. doi: 10.1145/3422622.
|
[18] |
CHEN Zhaoyu, LI Bo, WU Shuang, et al. Shape matters: Deformable patch attack[C]. The 17th European Conference on Computer Vision, Tel Aviv, Israel, 2022: 529–548. doi: 10.1007/978-3-031-19772-7_31.
|
[19] |
LI Chenglong, LIANG Xinyan, LU Yijuan, et al. RGB-T object tracking: Benchmark and baseline[J]. Pattern Recognition, 2019, 96: 106977. doi: 10.1016/j.patcog.2019.106977.
|
[20] |
WIYATNO R and XU Anqi. Physical adversarial textures that fool visual object tracking[C]. 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 4821–4830. doi: 10.1109/ICCV.2019.00492.
|
[21] |
WEI Hui, WANG Zhixiang, JIA Xuemei, et al. HOTCOLD block: Fooling thermal infrared detectors with a novel wearable design[C]. The 37th AAAI Conference on Artificial Intelligence, Washington, USA, 2023: 15233–15241. doi: 10.1609/aaai.v37i12.26777.
|