Citation: | CAI Shuo, YAO Xuanshi, TANG Yuanzhi, DENG Zeyang. Scene-adaptive Knowledge Distillation-based Fusion of Infrared and Visible Light Images[J]. Journal of Electronics & Information Technology, 2025, 47(4): 1150-1160. doi: 10.11999/JEIT240886 |
[1] |
ZHANG Xingchen and DEMIRIS Y. Visible and infrared image fusion using deep learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(8): 10535–10554. doi: 10.1109/TPAMI.2023.3261282.
|
[2] |
唐霖峰, 张浩, 徐涵, 等. 基于深度学习的图像融合方法综述[J]. 中国图象图形学报, 2023, 28(1): 3–36. doi: 10.11834/jig.220422.
TANG Linfeng, ZHANG Hao, XU Han, et al. Deep learning-based image fusion: A survey[J]. Journal of Image and Graphics, 2023, 28(1): 3–36. doi: 10.11834/jig.220422.
|
[3] |
ZHANG Hao, XU Han, TIAN Xin, et al. Image fusion meets deep learning: A survey and perspective[J]. Information Fusion, 2021, 76: 323–336. doi: 10.1016/j.inffus.2021.06.008.
|
[4] |
KARIM S, TONG Grng, LI Jinyang, et al. Current advances and future perspectives of image fusion: A comprehensive review[J]. Information Fusion, 2023, 90: 185–217. doi: 10.1016/j.inffus.2022.09.019.
|
[5] |
LI Hui, WU Xiaojun, and KITTLER J. MDLatLRR: A novel decomposition method for infrared and visible image fusion[J]. IEEE Transactions on Image Processing, 2020, 29: 4733–4746. doi: 10.1109/TIP.2020.2975984.
|
[6] |
LIU Yu, CHEN Xun, WARD R K, et al. Image fusion with convolutional sparse representation[J]. IEEE Signal Processing Letters, 2016, 23(12): 1882–1886. doi: 10.1109/LSP.2016.2618776.
|
[7] |
FU Zhizhong, WANG Xue, XU Jin, et al. Infrared and visible images fusion based on RPCA and NSCT[J]. Infrared Physics & Technology, 2016, 77: 114–123. doi: 10.1016/j.infrared.2016.05.012.
|
[8] |
MA Jinlei, ZHOU Zhiqiang, WANG Bo, et al. Infrared and visible image fusion based on visual saliency map and weighted least square optimization[J]. Infrared Physics & Technology, 2017, 82: 8–17. doi: 10.1016/j.infrared.2017.02.005.
|
[9] |
ZHAO Wenda, LU Huimin, and WANG Dong. Multisensor image fusion and enhancement in spectral total variation domain[J]. IEEE Transactions on Multimedia, 2017, 20(4): 866–879. doi: 10.1109/TMM.2017.2760100.
|
[10] |
LI Hui and WU Xiaojun. DenseFuse: A fusion approach to infrared and visible images[J]. IEEE Transactions on Image Processing, 2019, 28(5): 2614–2623. doi: 10.1109/TIP.2018.2887342.
|
[11] |
LI Hui, WU Xiaojun, and DURRANI T. NestFuse: An infrared and visible image fusion architecture based on nest connection and spatial/channel attention models[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(12): 9645–9656. doi: 10.1109/TIM.2020.3005230.
|
[12] |
LI Hui, WU Xiaojun, and KITTLER J. RFN-Nest: An end-to-end residual fusion network for infrared and visible images[J]. Information Fusion, 2021, 73: 72–86. doi: 10.1016/j.inffus.2021.02.023.
|
[13] |
LONG Yongzhi, JIA Haitao, ZHONG Yida, et al. RXDNFuse: A aggregated residual dense network for infrared and visible image fusion[J]. Information Fusion, 2021, 69: 128–141. doi: 10.1016/j.inffus.2020.11.009.
|
[14] |
HUANG Gao, LIU Zhuang, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 2261–2269. doi: 10.1109/CVPR.2017.243.
|
[15] |
XIE Saining, GIRSHICK R, DOLLÁR P, et al. Aggregated residual transformations for deep neural networks[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 5987–5995. doi: 10.1109/CVPR.2017.634.
|
[16] |
MA Jiayi, TANG Linfeng, XU Meilong, et al. STDFusionNet: An infrared and visible image fusion network based on salient target detection[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 5009513. doi: 10.1109/TIM.2021.3075747.
|
[17] |
MA Jiayi, YU Wei, LIANG Pengwei, et al. FusionGAN: A generative adversarial network for infrared and visible image fusion[J]. Information Fusion, 2019, 48: 11–26. doi: 10.1016/j.inffus.2018.09.004.
|
[18] |
XUE Weimin, WANG Anhong, and ZHAO Lijun. FLFuse-Net: A fast and lightweight infrared and visible image fusion network via feature flow and edge compensation for salient information[J]. Infrared Physics & Technology, 2022, 127: 104383. doi: 10.1016/j.infrared.2022.104383.
|
[19] |
陈昭宇, 范洪博, 马美燕, 等. 基于结构重参数化的红外与可见光图像融合[J]. 控制与决策, 2024, 39(7): 2275–2283. doi: 10.13195/j.kzyjc.2022.2003.
CHEN Zhaoyu, FAN Hongbo, MA Meiyan, et al. Infrared and visible image fusion based on structural re-parameterization[J]. Control and Decision, 2024, 39(7): 2275–2283. doi: 10.13195/j.kzyjc.2022.2003.
|
[20] |
马美燕, 陈昭宇, 刘海鹏. 基于差分融合与边缘增强的轻量级红外与可见光图像融合算法[J]. 化工自动化及仪表, 2024, 51(4): 644–651. doi: 10.20030/j.cnki.1000-3932.202404013.
MA Meiyan, CHEN Zhaoyu, and LIU Haipeng. A lightweight infrared and visible image fusion algorithm based on difference fusion and edge enhancement[J]. Control and Instruments in Chemical Industry, 2024, 51(4): 644–651. doi: 10.20030/j.cnki.1000-3932.202404013.
|
[21] |
TANG Linfeng, ZHANG Hao, XU Han, et al. Rethinking the necessity of image fusion in high-level vision tasks: A practical infrared and visible image fusion network based on progressive semantic injection and scene fidelity[J]. Information Fusion, 2023, 99: 101870. doi: 10.1016/j.inffus.2023.101870.
|
[22] |
GUO Chunle, LI Chongyi, GUO Jichang, et al. Zero-reference deep curve estimation for low-light image enhancement[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 1777–1786. doi: 10.1109/CVPR42600.2020.00185.
|
[23] |
WANG Ao, CHEN Hui, LIN Zijia, et al. Rep ViT: Revisiting mobile CNN from ViT perspective[C]. 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2024: 15909–15920. doi: 10.1109/CVPR52733.2024.01506.
|
[24] |
TANG Linfeng, YUAN Jiteng, ZHANG Hao, et al. PIAFusion: A progressive infrared and visible image fusion network based on illumination aware[J]. Information Fusion, 2022, 83/84: 79–92. doi: 10.1016/j.inffus.2022.03.007.
|
[25] |
LIU Jinyuan, FAN Xin, HUANG Zhanbo, et al. Target-aware dual adversarial learning and a multi-scenario multi-modality benchmark to fuse infrared and visible for object detection[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 5792–5801. doi: 10.1109/CVPR52688.2022.00571.
|
[26] |
ZHANG Yu, LIU Yu, SUN Peng, et al. IFCNN: A general image fusion framework based on convolutional neural network[J]. Information Fusion, 2020, 54: 99–118. doi: 10.1016/j.inffus.2019.07.011.
|
[27] |
MA Jiayi, ZHANG Hao, SHAO Zhenfeng, et al. GANMcC: A generative adversarial network with multiclassification constraints for infrared and visible image fusion[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 5005014. doi: 10.1109/TIM.2020.3038013.
|
[28] |
XU Han, MA Jiayi, JIANG Junjun, et al. U2Fusion: A unified unsupervised image fusion network[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(1): 502–518. doi: 10.1109/TPAMI.2020.3012548.
|
[29] |
QIAN Yao, LIU Gang, TANG Haojie, et al. BTSFusion: Fusion of infrared and visible image via a mechanism of balancing texture and salience[J]. Optics and Lasers in Engineering, 2024, 173: 107925. doi: 10.1016/j.optlaseng.2023.107925.
|