Citation: | YANG Lijun, KONG Wenjie, LU Haitao, QI Jin. A Key Generation Method Based on Atomic Norm Minimization For Reconfigurable Intelligent Surface-Assisted Millimeter Wave MIMO Communication Systems[J]. Journal of Electronics & Information Technology, 2025, 47(4): 1066-1075. doi: 10.11999/JEIT240885 |
[1] |
张泳翔. 基于无线信道特征的物理层密钥技术研究[D]. [硕士论文], 江苏科技大学, 2022. doi: 10.27171/d.cnki.ghdcc.2022.000592.
ZHANG Yongxiang. Research on physical layer key technology based on wireless channel characteristics[D]. [Master dissertation], Jiangsu University of Science and Technology, 2022. doi: 10.27171/d.cnki.ghdcc.2022.000592.
|
[2] |
YOU Xiaohu, WANG Chengxiang, HUANG Jie, et al. Towards 6G wireless communication networks: Vision, enabling technologies, and new paradigm shifts[J]. Science China Information Sciences, 2021, 64(1): 110301. doi: 10.1007/s11432-020-2955-6.
|
[3] |
KAUR R, BANSAL B, MAJHI S, et al. A survey on reconfigurable intelligent surface for physical layer security of next-generation wireless communications[J]. IEEE Open Journal of Vehicular Technology, 2024, 5: 172–199. doi: 10.1109/OJVT.2023.3348658.
|
[4] |
SHLEZINGER N, ALEXANDROPOULOS G C, IMANI M F, et al. Dynamic metasurface antennas for 6G extreme massive MIMO communications[J]. IEEE Wireless Communications, 2021, 28(2): 106–113. doi: 10.1109/MWC.001.2000267.
|
[5] |
郝一诺, 金梁, 黄开枝, 等. 准静态场景下基于智能超表面的密钥生成方法[J]. 网络与信息安全学报, 2021, 7(2): 77–85. doi: 10.11959/j.issn.2096-109x.2021027.
HAO Yinuo, JIN Liang, HUANG Kaizhi, et al. Key generation method based on reconfigurable intelligent surface in quasi-static scene[J]. Chinese Journal of Network and Information Security, 2021, 7(2): 77–85. doi: 10.11959/j.issn.2096-109x.2021027.
|
[6] |
CHEN Zhen, GUO Yeyong, ZHANG Peichang, et al. Physical Layer Security Improvement for Hybrid RIS-Assisted MIMO Communications[J]. IEEE Communications Letters, 2024, 28(11): 2493–2497. doi: 10.1109/LCOMM.2024.3427010.
|
[7] |
HU Xiaoyan, JIN Liang, HUANG Kaizhi, et al. Intelligent reflecting surface-assisted secret key generation with discrete phase shifts in static environment[J]. IEEE Wireless Communications Letters, 2021, 10(9): 1867–1870. doi: 10.1109/LWC.2021.3084347.
|
[8] |
JI Zijie, YEOH P L, CHEN Gaojie, et al. Random shifting intelligent reflecting surface for OTP encrypted data transmission[J]. IEEE Wireless Communications Letters, 2021, 10(6): 1192–1196. doi: 10.1109/LWC.2021.3061549.
|
[9] |
唐杰, 文红, 宋欢欢, 等. 基于智能反射表面辅助的MIMO无线通信密钥快速生成[J]. 电子与信息学报, 2022, 44(7): 2264–2272. doi: 10.11999/JEIT210442.
TANG Jie, WEN Hong, SONG Huanhuan, et al. MIMO fast wireless secret key generation based on intelligent reflecting surface[J]. Journal of Electronics & Information Technology, 2022, 44(7): 2264–2272. doi: 10.11999/JEIT210442.
|
[10] |
SUN Shu, MACCARTNEY G R, and RAPPAPORT T S. A novel millimeter-wave channel simulator and applications for 5G wireless communications[C]. 2017 IEEE International Conference on Communications (ICC), Paris, France, 2017: 1–7. doi: 10.1109/ICC.2017.7996792.
|
[11] |
JIAO Long, TANG Jie, and ZENG Kai. Physical layer key generation using virtual AoA and AoD of mmWave massive MIMO channel[C]. 2018 IEEE Conference on Communications and Network Security (CNS), Beijing, China, 2018: 1–9. doi: 10.1109/CNS.2018.8433175.
|
[12] |
LU Tianyu, CHEN Liquan, ZHANG Junqing, et al. Duong. Reconfigurable intelligent surface-assisted key generation for millimeter wave communications[C]. 2023 IEEE Wireless Communications and Networking Conference (WCNC), Glasgow, United Kingdom, 2023: 1–6. doi: 10.1109/WCNC55385.2023.10119128.
|
[13] |
LI Hongyuan, CHEN Liquan, LU Tianyu, et al. Angular-domain secret key generation for RIS-aided mmWave MIMO systems[C]. 2023 IEEE 98th Vehicular Technology Conference (VTC2023-Fall), Hong Kong, China, 2023: 1–6. doi: 10.1109/VTC2023-Fall60731.2023.10333834.
|
[14] |
SCHMIDT R. Multiple emitter location and signal parameter estimation[J]. IEEE Transactions on Antennas and Propagation, 1986, 34(3): 276–280. doi: 10.1109/TAP.1986.1143830.
|
[15] |
JU Ying, ZOU Guoxue, BAI Haowen, et al. Random beam switching: A physical layer key generation approach to safeguard mmWave electronic devices[J]. IEEE Transactions on Consumer Electronics, 2023, 69(3): 594–607. doi: 10.1109/TCE.2023.3273125.
|
[16] |
ALKHATEEB A, LEUS G, and HEATH R W. Compressed sensing based multi-user millimeter wave systems: How many measurements are needed?[C]. 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), South Brisbane, Australia, 2015: 2909–2913. doi: 10.1109/ICASSP.2015.7178503.
|
[17] |
ZHANG Zhe, WANG Yue, and TIAN Zhi. Efficient two-dimensional line spectrum estimation based on decoupled atomic norm minimization[J]. Signal Processing, 2019, 163: 95–106. doi: 10.1016/j.sigpro.2019.04.024.
|
[18] |
朱荣. 基于IRS辅助的无线通信物理层密钥生成的研究[D]. [硕士论文], 东华大学, 2024. doi: 10.27012/d.cnki.gdhuu.2024.001141.
ZHU Rong. Research on IRS-assisted physical Layer key generation for wireless communication[D]. [Master dissertation], Donghua University, 2024. doi: 10.27012/d.cnki.gdhuu.2024.001141.
|
[19] |
WANG Yue, TIAN Zhi, FENG Shulan, et al. A fast channel estimation approach for millimeter-wave massive MIMO systems[C]. 2016 IEEE Global Conference on Signal and Information Processing (GlobalSIP), Washington, USA, 2016: 1413–1417. doi: 10.1109/GlobalSIP.2016.7906074.
|
[20] |
RAPPAPORT T S, SUN Shu, MAYZUS R, et al. Millimeter wave mobile communications for 5G cellular: It will work![J]. IEEE Access, 2013, 1: 335–349. doi: 10.1109/ACCESS.2013.2260813.
|