Citation: | LIU Siqi, GAO Zhi, CHEN Boan, LU Yao, ZHU Jun, LI Yanzhang, WANG Qiao. Earth Surface Anomaly Detection Using Graph Neural Network-based Representation and Reasoning of Remote Sensing Geographic Object Relationships[J]. Journal of Electronics & Information Technology, 2025, 47(6): 1690-1703. doi: 10.11999/JEIT240883 |
[1] |
XU Jianming, YAN Kai, FAN Zaiwang, et al. Toward a novel method for general on-orbit earth surface anomaly detection leveraging large vision models and lightweight priors[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 4706321. doi: 10.1109/TGRS.2024.3432749.
|
[2] |
王桥. 地表异常遥感探测与即时诊断方法研究框架[J]. 测绘学报, 2022, 51(7): 1141–1152. doi: 10.11947/j.AGCS.2022.20220124.
WANG Qiao. Research framework of remote sensing monitoring and real-time diagnosis of earth surface anomalies[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1141–1152. doi: 10.11947/j.AGCS.2022.20220124.
|
[3] |
JOHNSON J, KRISHNA R, STARK M, et al. Image retrieval using scene graphs[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 3668–3678. doi: 10.1109/CVPR.2015.7298990.
|
[4] |
LU Xiaoqiang, WANG Binqiang, ZHENG Xiangtao, et al. Exploring models and data for remote sensing image caption generation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(4): 2183–2195. doi: 10.1109/TGRS.2017.2776321.
|
[5] |
QU Bo, LI Xuelong, TAO Dacheng, et al. Deep semantic understanding of high resolution remote sensing image[C]. 2016 International Conference on Computer, Information and Telecommunication Systems, Kunming, China, 2016: 1–5. doi: 10.1109/CITS.2016.7546397.
|
[6] |
CHANG Xiaojun, REN Pengzhen, XU Pengfei, et al. A comprehensive survey of scene graphs: Generation and application[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(1): 1–26. doi: 10.1109/TPAMI.2021.3137605.
|
[7] |
CAI Qi, PAN Yingwei, NGO C W, et al. Exploring object relation in mean teacher for cross-domain detection[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 11449–11458. doi: 10.1109/CVPR.2019.01172.
|
[8] |
CHEN Jie, ZHOU Xing, ZHANG Yi, et al. Message-passing-driven triplet representation for geo-object relational inference in HRSI[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 8003205. doi: 10.1109/LGRS.2020.3038569.
|
[9] |
LIN Zhiyuan, ZHU Feng, KONG Yanzi, et al. SRSG and S2SG: A model and a dataset for scene graph generation of remote sensing images from segmentation results[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 4707411. doi: 10.1109/TGRS.2022.3185678.
|
[10] |
LI Yansheng, WANG Linlin, WANG Tingzhu, et al. STAR: A first-ever dataset and a large-scale benchmark for scene graph generation in large-size satellite imagery[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2025, 47(3): 1832–1849. doi: 10.1109/TPAMI.2024.3508072.
|
[11] |
陈杰, 戴欣宜, 周兴, 等. 双LSTM驱动的高分遥感影像地物目标空间关系语义描述[J]. 遥感学报, 2021, 25(5): 1085–1094. doi: 10.11834/jrs.20210340.
CHEN Jie, DAI Xinyi, ZHOU Xing, et al. Semantic understanding of geo-objects’ relationship in high resolution remote sensing image driven by dual LSTM[J]. National Remote Sensing Bulletin, 2021, 25(5): 1085–1094. doi: 10.11834/jrs.20210340.
|
[12] |
伍丝琪. 基于目标空间关系和多源地理数据的高分辨率遥感城市场景语义分类方法研究[D]. [硕士论文], 武汉大学, 2019.
WU Siqi. Research on high spatial resolution remote sensing urban scene classification using spatial relationship of objects and multi-source geographic data[D]. [Master dissertation], Wuhan University, 2019.
|
[13] |
周兴, 孙庚, 戴欣怡, 等. 基于语句模板的遥感影像地物空间关系语义理解[J]. 测绘工程, 2021, 30(6): 27–33,39. doi: 10.19349/j.cnki.issn1006-7949.2021.06.005.
ZHOU Xing, SUN Geng, DAI Xinyi, et al. Template-based spatial relationship semantic understanding of remote sensing images[J]. Engineering of Surveying and Mapping, 2021, 30(6): 27–33,39. doi: 10.19349/j.cnki.issn1006-7949.2021.06.005.
|
[14] |
XIA Junshi, YOKOYA N, ADRIANO B, et al. OpenEarthMap: A benchmark dataset for global high-resolution land cover mapping[C]. 2023 IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, USA, 2023: 6243–6253. doi: 10.1109/WACV56688.2023.00619.
|
[15] |
DETTMERS T, MINERVINI P, STENETORP P, et al. Convolutional 2D knowledge graph embeddings[C]. The 32nd AAAI Conference on Artificial Intelligence, New Orleans, USA, 2018: 1811–1818. doi: 10.1609/aaai.v32i1.11573.
|
[16] |
ZHOU Zhanke, ZHANG Yongqi, YAO Jiangchao, et al. Less is more: One-shot subgraph reasoning on large-scale knowledge graphs[C]. The 12th International Conference on Learning Representations, Vienna, Austria, 2024.
|
[17] |
ZHANG Yongqi and YAO Quanming. Knowledge graph reasoning with relational digraph[C]. The ACM Web Conference 2022, Lyon, France, 2022: 912–924. doi: 10.1145/3485447.3512008.
|
[18] |
TERU K K, DENIS E G, and HAMILTON W L. Inductive relation prediction by subgraph reasoning[C]. The 37th International Conference on Machine Learning, 2020: 876.
|
[19] |
XIONG Wenhan, HOANG T, and WANG W Y. DeepPath: A reinforcement learning method for knowledge graph reasoning[C]. The 2017 Conference on Empirical Methods in Natural Language Processing, Copenhagen, Denmark, 2017. doi: 10.18653/v1/D17-1060.
|
[20] |
SUCHANEK F M, KASNECI G, and WEIKUM G. Yago: A core of semantic knowledge[C]. The 16th International Conference on World Wide Web, Banff, Canada, 2007: 697–706. doi: 10.1145/1242572.1242667.
|
[21] |
GUPTA R, GOODMAN B, PATEL N, et al. Creating xBD: A dataset for assessing building damage from satellite imagery[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Long Beach, USA, 2019: 10–17. doi: 10.1184/R1/8135576.v1.
|