Citation: | SONG Xiaoying, HAO Chunyu, CHAI Li. Multi-Resolution Spatio-Temporal Fusion Graph Convolutional Network for Attention Deficit Hyperactivity Disorder Classification[J]. Journal of Electronics & Information Technology, 2025, 47(6): 1927-1936. doi: 10.11999/JEIT240872 |
[1] |
SHARMA A and COUTURE J. A review of the pathophysiology, etiology, and treatment of attention-deficit hyperactivity disorder (ADHD)[J]. Annals of Pharmacotherapy, 2014, 48(2): 209–225. doi: 10.1177/1060028013510699.
|
[2] |
杨健, 苗硕. 注意缺陷多动障碍患儿认知功能检测方法的进展[J]. 北京医学, 2015, 37(6): 507–508. doi: 10.15932/j.0253-9713.2015.6.001.
YANG Jian and MIAO Shuo. Advances in detection methods of cognitive function in children with attention deficit hyperactivity disorder[J]. Beijing Medical Journal, 2015, 37(6): 507–508. doi: 10.15932/j.0253-9713.2015.6.001.
|
[3] |
American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders[M]. 5th ed. Washington: American Psychiatric Publishing, 2013: 59–65. doi: 10.1176/appi.books.9780890425596.
|
[4] |
ARBABSHIRANI M R, PLIS S, SUI Jing, et al. Single subject prediction of brain disorders in neuroimaging: Promises and pitfalls[J]. NeuroImage, 2017, 145: 137–165. doi: 10.1016/j.neuroimage.2016.02.079.
|
[5] |
GRIMM O, VAN ROOIJ D, HOOGMAN M, et al. Transdiagnostic neuroimaging of reward system phenotypes in ADHD and comorbid disorders[J]. Neuroscience & Biobehavioral Reviews, 2021, 128: 165–181. doi: 10.1016/J.NEUBIOREV.2021.06.025.
|
[6] |
JIE Biao, LIU Mingxia, and SHEN Dinggang. Integration of temporal and spatial properties of dynamic connectivity networks for automatic diagnosis of brain disease[J]. Medical Image Analysis, 2018, 47: 81–94. doi: 10.1016/j.media.2018.03.013.
|
[7] |
杨昆, 常世龙, 王尉丞, 等. 基于sECANet通道注意力机制的肾透明细胞癌病理图像ISUP分级预测[J]. 电子与信息学报, 2022, 44(1): 138–148. doi: 10.11999/JEIT210900.
YANG Kun, CHANG Shilong, WANG Yucheng, et al. Predict the ISUP grade of clear cell renal cell carcinoma using pathological images based on sECANet chanel attention[J]. Journal of Electronics & Information Technology, 2022, 44(1): 138–148. doi: 10.11999/JEIT210900.
|
[8] |
金怀平, 薛飞跃, 李振辉, 等. 基于病理图像集成深度学习的胃癌预后预测方法[J]. 电子与信息学报, 2023, 45(7): 2623–2633. doi: 10.11999/JEIT220655.
JIN Huaiping, XUE Feiyue, LI Zhenhui, et al. Prognostic prediction of gastric cancer based on ensemble deep learning of pathological images[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2623–2633. doi: 10.11999/JEIT220655.
|
[9] |
PARISOT S, KTENA S I, FERRANTE E, et al. Spectral graph convolutions for population-based disease prediction[C]. The 20th International Conference on Medical Image Computing and Computer Assisted Intervention, Quebec City, Canada, 2017: 177–185. doi: 10.1007/978-3-319-66179-7_21.
|
[10] |
KAZI A, SHEKARFOROUSH S, ARVIND KRISHNA S, et al. InceptionGCN: Receptive field aware graph convolutional network for disease prediction[C]. The 26th International Conference on Information Processing in Medical Imaging, Hong Kong, China, 2019: 73–85. doi: 10.1007/978-3-030-20351-1_6.
|
[11] |
JIANG Hao, CAO Peng, XU MingYi, et al. Hi-GCN: A hierarchical graph convolution network for graph embedding learning of brain network and brain disorders prediction[J]. Computers in Biology and Medicine, 2020, 127: 104096. doi: 10.1016/j.compbiomed.2020.104096.
|
[12] |
LI Lanting, JIANG Hao, WEN Guangqi, et al. TE-HI-GCN: An ensemble of transfer hierarchical graph convolutional networks for disorder diagnosis[J]. Neuroinformatics, 2022, 20(2): 353–375. doi: 10.1007/S12021-021-09548-1.
|
[13] |
HUANG Yongxiang and CHUNG A C S. Disease prediction with edge-variational graph convolutional networks[J]. Medical Image Analysis, 2022, 77: 102375. doi: 10.1016/J.MEDIA.2022.102375.
|
[14] |
PARK K W and CHO S B. A residual graph convolutional network with spatio-temporal features for autism classification from fMRI brain images[J]. Applied Soft Computing, 2023, 142: 110363. doi: 10.1016/j.asoc.2023.110363.
|
[15] |
LI Ziyu, LI Qing, ZHU Zhiyuan, et al. Multi-scale spatio-temporal fusion with adaptive brain topology learning for fMRI based neural decoding[J]. IEEE Journal of Biomedical and Health Informatics, 2024, 28(1): 262–272. doi: 10.1109/JBHI.2023.3327023.
|
[16] |
LIU Rui, HUANG Zhian, HU Yao, et al. Spatio-temporal hybrid attentive graph network for diagnosis of mental disorders on fMRI time-series data[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2024, 8(6): 4046–4058. doi: 10.1109/TETCI.2024.3386612.
|
[17] |
MITRA A, SNYDER A Z, HACKER C D, et al. Lag structure in resting-state fMRI[J]. Journal of Neurophysiology, 2014, 111(11): 2374–2391. doi: 10.1152/jn.00804.2013.
|
[18] |
WU Zonghan, PAN Shirui, LONG Guodong, et al. Graph WaveNet for deep spatial-temporal graph modeling[C]. The Twenty-Eighth International Joint Conference on Artificial Intelligence, Macao, China, 2019: 1907–1913. doi: 10.24963/ijcai.2019/264.
|
[19] |
ASHBURNER J. SPM: A history[J]. NeuroImage, 2012, 62(2): 791–800. doi: 10.1016/j.neuroimage.2011.10.025.
|
[20] |
WHITFIELD-GABRIELI S and NIETO-CASTANON A. CONN: A functional connectivity toolbox for correlated and anticorrelated brain networks[J]. Brain Connectivity, 2012, 2(3): 125–141. doi: 10.1089/brain.2012.0073.
|
[21] |
KINGMA D P and BA J. Adam: A method for stochastic optimization[C]. The 3rd International Conference on Learning Representations, San Diego, USA, 2015.
|
[22] |
RIAZ A, ASAD M, ALONSO E, et al. DeepFMRI: End-to-end deep learning for functional connectivity and classification of ADHD using fMRI[J]. Journal of Neuroscience Methods, 2020, 335: 108506. doi: 10.1016/j.jneumeth.2019.108506.
|
[23] |
DOU Chengfeng, ZHANG Shikun, WANG Hanping, et al. ADHD fMRI short-time analysis method for edge computing based on multi-instance learning[J]. Journal of Systems Architecture, 2020, 111: 101834. doi: 10.1016/j.sysarc.2020.101834.
|
[24] |
ZHAO Kanhao, DUKA B, XIE Hua, et al. A dynamic graph convolutional neural network framework reveals new insights into connectome dysfunctions in ADHD[J]. NeuroImage, 2022, 246: 118774. doi: 10.1016/j.neuroimage.2021.118774.
|
[25] |
KIM B, PARK J, KIM T, et al. Finding essential parts of the brain in rs-fMRI can improve ADHD diagnosis using deep learning[J]. IEEE Access, 2023, 11: 116065–116075. doi: 10.1109/ACCESS.2023.3324670.
|
[26] |
PEI Shengbing, HE Fan, CAO Shuai, et al. Learning meta-stable state transition representation of brain function for ADHD identification[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 2530713. doi: 10.1109/TIM.2023.3324338.
|