Citation: | HUO Weigang, ZHU Xu, ZHANG Pan. Deep Active Time-series Clustering Based on Constraint Transitivity[J]. Journal of Electronics & Information Technology, 2025, 47(4): 1172-1181. doi: 10.11999/JEIT240855 |
[1] |
AIGNER W, MIKSCH S, SCHUMANN H, et al. Visualization of Time-Oriented Data[M]. London: Springer, 2011: 153–196.
|
[2] |
LEE S, CHOI C, and SON Y. Deep time-series clustering via latent representation alignment[J]. Knowledge-Based Systems, 2024, 303: 112434. doi: 10.1016/j.knosys.2024.112434.
|
[3] |
CAI Jinyu, FAN Jicong, GUO Wenzhong, et al. Efficient deep embedded subspace clustering[C]. The 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, USA, 2022: 21–30. doi: 10.1109/cvpr52688.2022.00012.
|
[4] |
ZHONG Ying, HUANG Dong, and WANG Changdong. Deep temporal contrastive clustering[J]. Neural Processing Letters, 2023, 55(6): 7869–7885. doi: 10.1007/s11063-023-11287-0.
|
[5] |
ROS F, RIAD R, and GUILLAUME S. Deep clustering framework review using multicriteria evaluation[J]. Knowledge-Based Systems, 2024, 285: 111315. doi: 10.1016/j.knosys.2023.111315.
|
[6] |
XIE Junyuan, GIRSHICK R, and FARHADI A. Unsupervised deep embedding for clustering analysis[C]. The 33rd International Conference on International Conference on Machine Learning, New York, USA, 2016: 478–487.
|
[7] |
MADIRAJU N S. Deep temporal clustering: Fully unsupervised learning of time-domain features[D]. [Ph. D. dissertation], Arizona State University, 2018.
|
[8] |
MA Qianli, ZHENG Jiawei, LI Sen, et al. Learning representations for time series clustering[C]. The 33rd International Conference on Neural Information Processing Systems, Red Hook, USA, 2019: 3781–3791.
|
[9] |
PENG Furong, LUO Jiachen, LU Xuan, et al. Cross-domain contrastive learning for time series clustering[C]. The AAAI Conference on Artificial Intelligence, Vancouver, Canada, 2024: 8921–8929. doi: 10.1609/aaai.v38i8.28740.
|
[10] |
LI Xiaosheng, XI Wenjie, and LIN J. Randomnet: Clustering time series using untrained deep neural networks[J]. Data Mining and Knowledge Discovery, 2024, 38(6): 3473–3502. doi: 10.1007/s10618-024-01048-5.
|
[11] |
SUN Bicheng, ZHOU Peng, DU Liang, et al. Active deep image clustering[J]. Knowledge-Based Systems, 2022, 252: 109346. doi: 10.1016/j.knosys.2022.109346.
|
[12] |
REN Yazhou, HU Kangrong, DAI Xinyi, et al. Semi-supervised deep embedded clustering[J]. Neurocomputing, 2019, 325: 121–130. doi: 10.1016/j.neucom.2018.10.016.
|
[13] |
REN Pengzhen, XIAO Yun, CHANG Xiaojun, et al. A survey of deep active learning[J]. ACM Computing Surveys (CSUR), 2022, 54(9): 180. doi: 10.1145/3472291.
|
[14] |
DENG Xun, LIU Junlong, ZHONG Han, et al. A3S: A general active clustering method with pairwise constraints[C]. The 41st International Conference on Machine Learning, Vienna, Austria, 2024: 10488–10505.
|
[15] |
李海林, 张丽萍. 时间序列数据挖掘中的聚类研究综述[J]. 电子科技大学学报, 2022, 51(3): 416–424. doi: 10.12178/1001-0548.2022055.
LI Hailin and ZHANG Liping. Summary of clustering research in time series data mining[J]. Journal of University of Electronic Science and Technology of China, 2022, 51(3): 416–424. doi: 10.12178/1001-0548.2022055.
|
[16] |
PETITJEAN F, KETTERLIN A, and GANÇARSKI P. A global averaging method for dynamic time warping, with applications to clustering[J]. Pattern Recognition, 2011, 44(3): 678–693. doi: 10.1016/j.patcog.2010.09.013.
|
[17] |
PAPARRIZOS J and GRAVANO L. Fast and accurate time-series clustering[J]. ACM Transactions on Database Systems (TODS), 2017, 42(2): 8. doi: 10.1145/3044711.
|
[18] |
ZAKARIA J, MUEEN A, and KEOGH E. Clustering time series using unsupervised-shapelets[C]. 2012 IEEE 12th International Conference on Data Mining, Brussels, Belgium, 2012: 785–794. doi: 10.1109/icdm.2012.26.
|
[19] |
余思琴, 闫秋艳, 闫欣鸣. 基于最佳u-shapelets的时间序列聚类算法[J]. 计算机应用, 2017, 37(8): 2349–2356. doi: 10.11772/j.issn.1001-9081.2017.08.2349.
YU Siqin, YAN Qiuyan, and YAN Xinming. Clustering algorithm of time series with optimal u-shapelets[J]. Journal of Computer Applications, 2017, 37(8): 2349–2356. doi: 10.11772/j.issn.1001-9081.2017.08.2349.
|
[20] |
MACQUEEN J B. Some methods for classification and analysis of multivariate observations[C]. The 5th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, USA, 1967: 281–297.
|
[21] |
JOHNSON S C. Hierarchical clustering schemes[J]. Psychometrika, 1967, 32(3): 241–254. doi: 10.1007/bf02289588.
|
[22] |
NG A Y, JORDAN M I, and WEISS Y. On spectral clustering: Analysis and an algorithm[C]. The 15th International Conference on Neural Information Processing Systems: Natural and Synthetic, Cambridge, USA, 2001: 849–856.
|
[23] |
CHANG Shiyu, ZHANG Yang, HAN Wei, et al. Dilated recurrent neural networks[C]. The 31st International Conference on Neural Information Processing Systems, Red Hook, USA, 2017: 76–86.
|
[24] |
BASU S, BANERJEE A, and MOONEY R J. Active semi-supervision for pairwise constrained clustering[C]. The 2004 SIAM International Conference on Data Mining, Lake Buena Vista, USA, 2004: 333–344. doi: 10.1137/1.9781611972740.31.
|
[25] |
DAU H A, BAGNALL A, KAMGAR K, et al. The UCR time series archive[J]. IEEE/CAA Journal of Automatica Sinica, 2019, 6(6): 1293–1305. doi: 10.1109/jas.2019.1911747.
|