Citation: | WANG Xudong, WU Jiaxin, CHEN Binbin. An Efficient Lightweight Network for Intra-pulse Modulation Identification of Low Probability of Intercept Radar Signals[J]. Journal of Electronics & Information Technology, 2025, 47(6): 1782-1791. doi: 10.11999/JEIT240848 |
[1] |
CHEN Binbin, WANG Xudong, ZHU Daiyin, et al. LPI radar signals modulation recognition in complex multipath environment based on improved ResNeSt[J]. IEEE Transactions on Aerospace and Electronic Systems, 2024, 60(6): 8887–8900. doi: 10.1109/TAES.2024.3436634.
|
[2] |
CHEN Tao, LIU Lizhi, and HUANG Xiangsong. LPI radar waveform recognition based on multi-branch MWC compressed sampling receiver[J]. IEEE Access, 2018, 6: 30342–30354. doi: 10.1109/ACCESS.2018.2845102.
|
[3] |
LEI Wentai, TAN Xin, LUO Chaopeng, et al. Mutual interference suppression and signal enhancement method for ground-penetrating radar based on deep learning[J]. Electronics, 2024, 13(23): 4722. doi: 10.3390/electronics13234722.
|
[4] |
HOU Qinghua and WU Huibin. Recognition of LPI radar signal intrapulse modulation based on CNN and time-frequency denoising[J]. Journal of Electronics and Information Science, 2024, 9(1): 142–152. doi: 10.23977/jeis.2024.090119.
|
[5] |
REN Feitao, QUAN Daying, SHEN Lai, et al. LPI radar signal recognition based on feature enhancement with deep metric learning[J]. Electronics, 2023, 12(24): 4934. doi: 10.3390/electronics12244934.
|
[6] |
LIANG Jingyue, LUO Zhongtao, and LIAO Renlong. Intra-pulse modulation recognition of radar signals based on efficient cross-scale aware network[J]. Sensors, 2024, 24(16): 5344. doi: 10.3390/s24165344.
|
[7] |
LIU Yunhao, HAN Sicun, GUO Chengjun, et al. The research of intra-pulse modulated signal recognition of radar emitter under few-shot learning condition based on multimodal fusion[J]. Electronics, 2024, 13(20): 4045. doi: 10.3390/electronics13204045.
|
[8] |
KONG S H, KIM M, HOANG L M, et al. Automatic LPI radar waveform recognition using CNN[J]. IEEE Access, 2018, 6: 4207–4219. doi: 10.1109/ACCESS.2017.2788942.
|
[9] |
石礼盟, 杨承志, 王美玲, 等. 基于深度网络的雷达信号调制方式识别[J]. 兵器装备工程学报, 2021, 42(6): 190–193,218. doi: 10.11809/bqzbgcxb2021.06.033.
SHI Limeng, YANG Chengzhi, WANG Meiling, et al. Recognition method of radar signal modulation method based on deep network[J]. Journal of Ordnance Equipment Engineering, 2021, 42(6): 190–193,218. doi: 10.11809/bqzbgcxb2021.06.033.
|
[10] |
蒋伊琳, 尹子茹. 基于卷积神经网络的低截获概率雷达信号检测算法[J]. 电子与信息学报, 2022, 44(2): 718–725. doi: 10.11999/JEIT210132.
JIANG Yilin and YIN Ziru. Low probability of intercept radar signal detection algorithm based on convolutional neural networks[J]. Journal of Electronics & Information Technology, 2022, 44(2): 718–725. doi: 10.11999/JEIT210132.
|
[11] |
HUYNH-THE T, DOAN V S, HUA C H, et al. Accurate LPI radar waveform recognition with CWD-TFA for deep convolutional network[J]. IEEE Wireless Communications Letters, 2021, 10(8): 1638–1642. doi: 10.1109/LWC.2021.3075880.
|
[12] |
DONG Ning, JIANG Hong, LIU Yipeng, et al. Intrapulse modulation radar signal recognition using CNN with second-order STFT-based synchrosqueezing transform[J]. Remote Sensing, 2024, 16(14): 2582. doi: 10.3390/rs16142582.
|
[13] |
QUAN Daying, REN Feitao, WANG Xiaofeng, et al. WVD‐GAN: A Wigner‐Ville distribution enhancement method based on generative adversarial network[J]. IET Radar, Sonar & Navigation, 2024, 18(6): 849–865. doi: 10.1049/rsn2.12532.
|
[14] |
LIU Lutao and LI Xinyu. Radar signal recognition based on triplet convolutional neural network[J]. EURASIP Journal on Advances in Signal Processing, 2021, 2021(1): 112. doi: 10.1186/s13634-021-00821-8.
|
[15] |
KALRA M, KUMAR S, and DAS B. Moving ground target detection with seismic signal using smooth pseudo Wigner-Ville distribution[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(6): 3896–3906. doi: 10.1109/TIM.2019.2932176.
|
[16] |
HEPSIBA D and JUSTIN J. Enhancement of single channel speech quality and intelligibility in multiple noise conditions using wiener filter and deep CNN[J]. Soft Computing, 2022, 26(23): 13037–13047. doi: 10.1007/s00500-021-06291-2.
|
[17] |
YU Xiao, WANG Songcheng, XU Hongyang, et al. Intelligent fault diagnosis of rotating machinery under variable working conditions based on deep transfer learning with fusion of local and global time–frequency features[J]. Structural Health Monitoring, 2024, 23(4): 2238–2254. doi: 10.1177/14759217231199427.
|
[18] |
HAN Kai, WANG Yunhe, TIAN Qi, et al. GhostNet: More features from cheap operations[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, USA, 2020: 1577–1586. doi: 10.1109/CVPR42600.2020.00165.
|
[19] |
MA Danqing, LI Shaojie, DANG Bo, et al. Fostc3net: A lightweight YOLOv5 based on the network structure optimization[J]. Journal of Physics: Conference Series, 2024, 2824: 012004. doi: 10.1088/1742-6596/2824/1/012004.
|
[20] |
WANG Zhong and LI Tong. A lightweight CNN model based on GhostNet[J]. Computational Intelligence and Neuroscience, 2022, 2022(1): 8396550. doi: 10.1155/2022/8396550.
|
[21] |
WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module[C]. The 15th European Conference on Computer Vision, Munich, Germany, 2018: 3–19. doi: 10.1007/978-3-030-01234-2_1.
|
[22] |
SI Weijian, LUO Jiaji, and DENG Zhian. Radar signal recognition and localization based on multiscale lightweight attention model[J]. Journal of Sensors, 2022, 2022(1): 9970879. doi: 10.1155/2022/9970879.
|
[23] |
BIAN Shengqin, HE Xinyu, XU Zhengguang, et al. Hybrid dilated convolution with attention mechanisms for image denoising[J]. Electronics, 2023, 12(18): 3770. doi: 10.3390/electronics12183770.
|
[24] |
ZHAO Liquan, WANG Leilei, JIA Yanfei, et al. A lightweight deep neural network with higher accuracy[J]. PLoS One, 2022, 17(8): e0271225. doi: 10.1371/journal.pone.0271225.
|
[25] |
LEI Yanmin, PAN Dong, FENG Zhibin, et al. Lightweight YOLOv5s human ear recognition based on MobileNetV3 and Ghostnet[J]. Applied Sciences, 2023, 13(11): 6667. doi: 10.3390/app13116667.
|