Citation: | GAO Guoju, ZHOU Shaolong, SUN Yu-E, HUANG He. Priority-aware Per-flow Size Measurement in High-speed Networks[J]. Journal of Electronics & Information Technology, 2025, 47(6): 1885-1895. doi: 10.11999/JEIT240834 |
[1] |
CISCO. Cisco annual internet report (2018–2023) white paper[EB/OL]. https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html, 2020.
|
[2] |
ZHAO Yikai, ZHOU Wei, HAN Wenchen, et al. Achieving top-K K-fairness for finding global top-K K frequent items[J]. IEEE Transactions on Knowledge and Data Engineering, 2025, 37(4): 1508–1526. doi: 10.1109/TKDE.2024.3523033.
|
[3] |
LI Yuanpeng, WANG Feiyu, YU Xiang, et al. LadderFilter: Filtering infrequent items with small memory and time overhead[J]. Proceedings of the ACM on Management of Data, 2023, 1(1): 10. doi: 10.1145/3588690.
|
[4] |
YANG Tong, JIANG Jie, LIU Peng, et al. Elastic sketch: Adaptive and fast network-wide measurements[C]. The 2018 Conference of the ACM Special Interest Group on Data Communication, Budapest, Hungary, 2018: 561–575. doi: 10.1145/3230543.3230544.
|
[5] |
YANG Tong, ZHANG Haowei, LI Jinyang, et al. HeavyKeeper: An accurate algorithm for finding top-k elephant flows[J]. IEEE/ACM Transactions on Networking, 2019, 27(5): 1845–1858. doi: 10.1109/TNET.2019.2933868.
|
[6] |
CHENG Shiyu, YANG Dongsheng, YANG Tong, et al. LTC: A fast algorithm to accurately find significant items in data streams[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(9): 4342–4356. doi: 10.1109/TKDE.2020.3038911.
|
[7] |
DU Yang, HUANG He, SUN Y E, et al. Self-adaptive sampling based per-flow traffic measurement[J]. IEEE/ACM Transactions on Networking, 2023, 31(3): 1010–1025. doi: 10.1109/TNET.2022.3212066.
|
[8] |
ZHANG Yinda, LI Jinyang, LEI Yutian, et al. On-off sketch: A fast and accurate sketch on persistence[J]. Proceedings of the VLDB Endowment, 2020, 14(2): 128–140. doi: 10.14778/3425879.3425884.
|
[9] |
WANG Haibo, MELISSOURGOS D, MA Chaoyi, et al. Real-time spread burst detection in data streaming[J]. Proceedings of the ACM on Measurement and Analysis of Computing Systems, 2023, 7(2): 35. doi: 10.1145/3589979.
|
[10] |
LIN K C J and LAI Weilun. MC-sketch: Enabling heterogeneous network monitoring resolutions with multi-class sketch[C]. IEEE INFOCOM 2022 - IEEE Conference on Computer Communications, London, United Kingdom, 2022: 220–229. doi: 10.1109/INFOCOM48880.2022.9796955.
|
[11] |
YAN Yibo, CHEN Cheng, LIN Huiping, et al. Priority-aware per-flow measurement using cuckoo Sketch[C]. 2020 IFIP Networking Conference (Networking), Paris, France, 2020: 622–624.
|
[12] |
LI Sitan, HUANG Jiawei, ZHANG Wenlu, et al. PA-sketch: A fast and accurate sketch for differentiated flow estimation[C]. 2023 IEEE 31st International Conference on Network Protocols (ICNP), Reykjavik, Iceland, 2023: 1–11. doi: 10.1109/ICNP59255.2023.10355581.
|
[13] |
MINTON G T and PRICE E. Improved concentration bounds for count-sketch[C]. The Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, Portland, Oregon, 2014: 669–686. doi: 10.5555/2634074.2634125.
|
[14] |
TING D. Count-min: Optimal estimation and tight error bounds using empirical error distributions[C]. The 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, United Kingdom, 2018: 2319–2328. doi: 10.1145/3219819.3219975.
|
[15] |
ESTAN C and VARGHESE G. New directions in traffic measurement and accounting: Focusing on the elephants, ignoring the mice[J]. ACM Transactions on Computer Systems, 2003, 21(3): 270–313. doi: 10.1145/859716.859719.
|
[16] |
ZHAO Xiaolei, WEN Mei, TANG Minjin, et al. HybridSketch: A memory-centric precise approach for flow measurement[C]. ICC 2020 - 2020 IEEE International Conference on Communications (ICC), Dublin, Ireland, 2020: 1–7. doi: 10.1109/ICC40277.2020.9149374.
|
[17] |
CAIDA. Anonymized internet traces 2019[EB/OL]. https://catalog.caida.org/dataset/passive_2019_pcap, 2019.
|