Citation: | FAN Lingyan, ZHANG Zhe, HUANG Cankun, LUO Jianping, LIU Hailuan. A Novel Adaptive Optimization Strategy for High-Performance CPU Clock Trees[J]. Journal of Electronics & Information Technology, 2025, 47(4): 1192-1201. doi: 10.11999/JEIT240811 |
[1] |
杨亮, 王亚军, 张竣昊, 等. 处理器体系结构模拟器综述[J]. 电子与封装, 2024, 24(8): 080301. doi: 10.16257/j.cnki.1681-1070.2024.0097.
YANG Liang, WANG Yajun, ZHANG Junhao, et al. Overview of processor architecture simulators[J]. Electronics & Packaging, 2024, 24(8): 080301. doi: 10.16257/j.cnki.1681-1070.2024.0097.
|
[2] |
韩宇昕, 卜刚, 郭钰. 基于RISC-V内核的UHF RFID阅读器SoC设计[J]. 计算机工程与设计, 2024, 45(5): 1588–1594. doi: 10.16208/j.issn1000-7024.2024.05.040.
HAN Yuxin, BU Gang, and GUO Yu. SoC of UHF RFID interrogator design based on RISC-V core[J]. Computer Engineering and Design, 2024, 45(5): 1588–1594. doi: 10.16208/j.issn1000-7024.2024.05.040.
|
[3] |
柳耀勇, 王研博, 杨龙波, 等. RISC-V技术生态发展趋势及未来展望[J]. 信息化研究, 2024(6): 66–67, 63. doi: 10.3969/j.issn.1672-5158.2024.06.027.
LIU Yaoyong, WANG Yanbo, YANG Longbo, et al. Trends and future perspectives of RISC-V technology ecosystem[J]. Informatization-Research, 2024(6): 66–67, 63. doi: 10.3969/j.issn.1672-5158.2024.06.027.
|
[4] |
丁志远, 朱家鑫, 吴国全, 等. 面向RISC-V适配开发的x86 built-in函数转换方法[J]. 广西大学学报(自然科学版), 2024, 49(3): 620–636. doi: 10.13624/j.cnki.issn.1001-7445.2024.0620.
DING Zhiyuan, ZHU Jiaxin, WU Guoquan, et al. An approach to adapting x86 built-in functions for RISC-V development[J]. Journal of Guangxi University (Natural Science Edition), 2024, 49(3): 620–636. doi: 10.13624/j.cnki.issn.1001-7445.2024.0620.
|
[5] |
XU Yinan, YU Zihao, TANG Dan, et al. Towards developing high performance RISC-V processors using agile methodology[C]. The 55th IEEE/ACM International Symposium on Microarchitecture, Chicago, USA, 2022: 1178–1199. doi: 10.1109/MICRO56248.2022.00080.
|
[6] |
ZYUBAN V, TAYLOR S A, CHRISTENSEN B, et al. IBM POWER7+ design for higher frequency at fixed power[J]. IBM Journal of Research and Development, 2013, 57(6): 1: 1–1: 18. doi: 10.1147/JRD.2013.2279597.
|
[7] |
戈喆, 王志鸿, 厉媛玥. 基于Innovus的低功耗物理设计[J]. 电子技术应用, 2016, 42(8): 21–24. doi: 10.16157/j.issn.0258-7998.2016.08.003.
GE Zhe, WANG Zhihong, and LI Yuanyue. Low power physical design in Innovus[J]. Application of Electronic Technique, 2016, 42(8): 21–24. doi: 10.16157/j.issn.0258-7998.2016.08.003.
|
[8] |
王虎虎, 雷倩倩, 刘露, 等. 一种快速实现时序收敛的设计方法[J]. 微电子学与计算机, 2024, 41(4): 123–131. doi: 10.19304/J.ISSN1000-7180.2023.0050.
WANG Huhu, LEI Qianqian, LIU Lu, et al. A design methodology for fast timing closure[J]. Microelectronics & Computer, 2024, 41(4): 123–131. doi: 10.19304/J.ISSN1000-7180.2023.0050.
|
[9] |
朱佳琪, 陈岚, 王海永. 一种低功耗时钟树的设计和优化方法[J]. 微电子学与计算机, 2021, 38(10): 85–90. doi: 10.19304/J.ISSN1000-7180.2021.0015.
ZHU Jiaqi, CHEN Lan, and WANG Haiyong. A low-power clock tree design and optimization method[J]. Microelectronics & Computer, 2021, 38(10): 85–90. doi: 10.19304/J.ISSN1000-7180.2021.0015.
|
[10] |
杜文静. 基于TSMC6nm工艺的GPU模块低功耗物理设计[D]. [硕士论文], 西安理工大学, 2023. doi: 10.27398/d.cnki.gxalu.2023.000795.
DU Wenjing. Low-power physical design of GPU module based on TSMC 6nm process[D]. [Master dissertation], Xi’an University of Technology, 2023. doi: 10.27398/d.cnki.gxalu.2023.000795.
|
[11] |
翟金标, 李建成. 基于28 nm数字芯片的分步式时钟树综合设计[J]. 中国集成电路, 2022, 31(8): 40–44. doi: 10.3969/j.issn.1681-5289.2022.08.007.
ZHAI Jinbiao and LI Jiancheng. Clock tree syntehsis of step by step based on 28nm digital chip[J]. China Integrated Circuit, 2022, 31(8): 40–44. doi: 10.3969/j.issn.1681-5289.2022.08.007.
|
[12] |
NAIR R K R, POTHIRAJ S, NAIR T R R, et al. A novel power aware placement and adaptive radix tree based clock tree synthesis for 3D-integrated circuits[J]. Microprocessors and Microsystems, 2020: 103455. doi: 10.1016/j.micpro.2020.103455.
|
[13] |
DO S G, KIM S, KANG S. Skew control methodology for useful-skew implementation[C]. 2016 International SoC Design Conference, Jeju, Korea (South), 2016: 221–222. doi: 10.1109/ISOCC.2016.7799867.
|
[14] |
GARG V. Common path pessimism removal: An industry perspective: Special session: Common path pessimism removal[C]. 2014 IEEE/ACM International Conference on Computer-Aided Design, San Jose, USA, 2014: 592–595. doi: 10.1109/ICCAD.2014.7001412.
|
[15] |
YANG Tianhao, ZHAO Zhenyu, HAN Ao, et al. Automatic timing ECO using stage-based path delay prediction[C]. The 20th IEEE Interregional NEWCAS Conference (NEWCAS), Quebec City, Canada, 2022: 455–459. doi: 10.1109/NEWCAS52662.2022.9842155.
|
[16] |
张祥, 赵启林. 基于缓冲器的ASIC芯片时序优化设计[J]. 集成电路与嵌入式系统, 2024, 24(12): 33–37. doi: 10.20193/j.ices2097-4191.2024.0046.
ZHANG Xiang and ZHAO Qilin. Timing optimization design of ASIC chip based on buffer[J]. Integrated Circuits and Embedded Systems, 2024, 24(12): 33–37. doi: 10.20193/j.ices2097-4191.2024.0046.
|
[17] |
FENG W, WEI Q, LI Y, et al. Analysis and testing NeoKylin’s clock system[C]. 2014 International Conference on Simulation and Modeling Methodologies, Technologies and Applications (SMTA 2014 VI), Information Engineering Research Institute, USA, Department of Computer Simulation Techniques, Luoyang Electronic Equipment Test Center of China, 2014: 8.
|