Citation: | LI Ning, WANG Zan, SHU Gaofeng, ZHANG Tingwei, GUO Zhengwei. Siamese Network-assisted Multi-domain Feature Fusion for Radar Active Jamming Recognition Method[J]. Journal of Electronics & Information Technology, 2025, 47(6): 1837-1849. doi: 10.11999/JEIT240797 |
[1] |
YAN Junkun, LIU Hongwei, JIU Bo, et al. Joint detection and tracking processing algorithm for target tracking in multiple radar system[J]. IEEE Sensors Journal, 2015, 15(11): 6534–6541. doi: 10.1109/JSEN.2015.2461435.
|
[2] |
LI Xinrui, CHEN Baixiao, CHEN Xiaoying, et al. An efficient hybrid jamming suppression method for multichannel synthetic aperture radar based on group iterative separation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5214316. doi: 10.1109/TGRS.2024.3409713.
|
[3] |
祝存海. 基于特征提取的雷达有源干扰信号分类研究[D]. [硕士论文], 西安电子科技大学, 2017. doi: 10.7666/d.D01385660.
ZHU Cunhai. Research on radar active jamming signal disturbance classification base on feature extraction[D]. [Master dissertation], Xidian University, 2017. doi: 1 0.7666/d.D01385660.
|
[4] |
郝万兵, 马若飞, 洪伟. 基于时频特征提取的雷达有源干扰识别[J]. 火控雷达技术, 2017, 46(4): 11–15. doi: 10.3969/j.issn.1008-8652.2017.04.003.
HAO Wanbing, MA Ruofei, and HONG Wei. Radar active jamming identification based on time-frequency characteristic extraction[J]. Fire Control Radar Technology, 2017, 46(4): 11–15. doi: 10.3969/j.issn.1008-8652.2017.04.003.
|
[5] |
WANG Yafeng, SUN Boye, and WANG Ning. Recognition of radar active-jamming through convolutional neural networks[J]. The Journal of Engineering, 2019, 2019(21): 7695–7697. doi: 10.1049/joe.2019.0659.
|
[6] |
LI Ming, REN Qinghua, and WU Jialong. Interference classification and identification of TDCS based on improved convolutional neural network[C]. 2020 Second International Conference on Artificial Intelligence Technologies and Application (ICAITA), Dalian, China, 2020: 012155. doi: 10.1088/1742-6596/1651/1/012155.
|
[7] |
SHAO Guangqing, CHEN Yushi, and WEI Yinsheng. Deep fusion for radar jamming signal classification based on CNN[J]. IEEE Access, 2020, 8: 117236–117244. doi: 10.1109/ACCESS.2020.3004188.
|
[8] |
WANG Jingyi, DONG Wenhao, and SONG Zhiyong. Radar active jamming recognition based on time-frequency image classification[C]. 2021 5th International Conference on Electronic Information Technology and Computer Engineering, Xiamen, China, 2021: 449–454. doi: 10.1145/3501409.3502153.
|
[9] |
ZOU Wenxu, XIE Kai, and LIN Jinjian. Light‐weight deep learning method for active jamming recognition based on improved MobileViT[J]. IET Radar, Sonar & Navigation, 2023, 17(8): 1299–1311. doi: 10.1049/rsn2.12420.
|
[10] |
KOCH G, ZEMEL R, and SALAKHUTDINOV R. Siamese neural networks for one-shot image recognition[C]. The 32nd International Conference on Machine Learning, Lille, France, 2015: 1–8.
|
[11] |
WANG Pengyu, CHENG Yufan, DONG Binhong, et al. Convolutional neural network-based interference recognition[C]. 2020 IEEE 20th International Conference on Communication Technology, Nanning, China, 2020: 1296–1300. doi: 10.1109/ICCT50939.2020.9295942.
|
[12] |
ZHOU Hongping, WANG Lei, and GUO Zhongyi. Compound radar jamming recognition based on signal source separation[J]. Signal Processing, 2023, 214: 109246. doi: 10.1016/j.sigpro.2023.109246.
|
[13] |
YANG Jikai, BAI Zhiquan, HU Jiacheng, et al. Time-frequency analysis and convolutional neural network based Fuze jamming signal recognition[C]. The 25th International Conference on Advanced Communication Technology (ICACT), Pyeongchang, Korea, 2023: 277–282. doi: 10.23919/ICACT56868.2023.10079346.
|
[14] |
ZHAO Minghang, ZHONG Shisheng, FU Xuyun, et al. Deep residual shrinkage networks for fault diagnosis[J]. IEEE Transactions on Industrial Informatics, 2020, 16(7): 4681–4690. doi: 10.1109/TII.2019.2943898.
|
[15] |
LEI Sai, LU Mingming, LIN Jieqiong, et al. Remote sensing image denoising based on improved semi-soft threshold[J]. Signal, Image and Video Processing, 2021, 15(1): 73–81. doi: 10.1007/s11760-020-01722-3.
|
[16] |
HUANG Jiru, SHEN Qian, WANG Min, et al. Multiple attention siamese network for high-resolution image change detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5406216. doi: 10.1109/TGRS.2021.3127580.
|