Citation: | ZHAO Xiaoqiang, HE Jiaqi. Adaptive Oversampling Method Based on Maximum Safe Nearest Neighbor and Local Density[J]. Journal of Electronics & Information Technology, 2025, 47(4): 1140-1149. doi: 10.11999/JEIT240441 |
[1] |
李艳霞, 柴毅, 胡友强, 等. 不平衡数据分类方法综述[J]. 控制与决策, 2019, 34(4): 673–688. doi: 10.13195/j.kzyjc.2018.0865.
LI Yanxia, CHAI Yi, HU Youqiang, et al. Review of imbalanced data classification methods[J]. Control and Decision, 2019, 34(4): 673–688. doi: 10.13195/j.kzyjc.2018.0865.
|
[2] |
GUO Haixiang, LI Yijing, SHANG J, et al. Learning from class-imbalanced data: Review of methods and applications[J]. Expert Systems with Applications, 2017, 73: 220–239. doi: 10.1016/j.eswa.2016.12.035.
|
[3] |
SHIN K, HAN J, and KANG S. MI-MOTE: Multiple imputation-based minority oversampling technique for imbalanced and incomplete data classification[J]. Information Sciences, 2021, 575: 80–89. doi: 10.1016/j.ins.2021.06.043.
|
[4] |
苏逸, 李晓军, 姚俊萍, 等. 不平衡数据分类数据层面方法: 现状及研究进展[J]. 计算机应用研究, 2023, 40(1): 11–19. doi: 10.19734/j.issn.1001-3695.2022.05.0250.
SU Yi, LI Xiaojun, YAO Junping, et al. Data-level methods of imbalanced data classification: Status and research development[J]. Application Research of Computers, 2023, 40(1): 11–19. doi: 10.19734/j.issn.1001-3695.2022.05.0250.
|
[5] |
THABTAH F, HAMMOUD S, KAMALOV F, et al. Data imbalance in classification: Experimental evaluation[J]. Information Sciences, 2020, 513: 429–441. doi: 10.1016/j.ins.2019.11.004.
|
[6] |
CHAWLA N V, BOWYER K W, HALL L O, et al. SMOTE: Synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2002, 16: 321–357. doi: 10.1613/jair.953.
|
[7] |
ABDI L and HASHEMI S. To combat multi-class imbalanced problems by means of over-sampling techniques[J]. IEEE Transactions on Knowledge and Data Engineering, 2016, 28(1): 238–251. doi: 10.1109/TKDE.2015.2458858.
|
[8] |
CHEN Baiyun, XIA Shuyin, CHEN Zizhong, et al. RSMOTE: A self-adaptive robust SMOTE for imbalanced problems with label noise[J]. Information Sciences, 2021, 553: 397–428. doi: 10.1016/j.ins.2020.10.013.
|
[9] |
HAN Hui, WANG Wenyuan, and MAO Binghuan. Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning[C]. The International Conference on Intelligent Computing Advances in Intelligent Computing, Hefei, China, 2005: 878–887. doi: 10.1007/11538059_91.
|
[10] |
HE Haibo, BAI Yang, GARCIA E A, et al. ADASYN: Adaptive synthetic sampling approach for imbalanced learning[C]. 2008 IEEE International Joint Conference on Neural Networks, Hong Kong, China, 2008: 1322–1328. doi: 10.1109/IJCNN.2008.4633969.
|
[11] |
SOLTANZADEH P and HASHEMZADEH M. RCSMOTE: Range-Controlled synthetic minority over-sampling technique for handling the class imbalance problem[J]. Information Sciences, 2021, 542: 92–111. doi: 10.1016/j.ins.2020.07.014.
|
[12] |
XU Zhaozhao, SHEN Derong, NIE Tiezheng, et al. A cluster-based oversampling algorithm combining SMOTE and k-means for imbalanced medical data[J]. Information Sciences, 2021, 572: 574–589. doi: 10.1016/j.ins.2021.02.056.
|
[13] |
高雷阜, 张梦瑶, 赵世杰. 融合簇边界移动与自适应合成的混合采样算法[J]. 电子学报, 2022, 50(10): 2517–2529. doi: 10.12263/DZXB.20210265.
GAO Leifu, ZHANG Mengyao, and ZHAO Shijie. Mixed-sampling algorithm combining cluster boundary movement and adaptive synthesis[J]. Acta Electronica Sinica, 2022, 50(10): 2517–2529. doi: 10.12263/DZXB.20210265.
|
[14] |
黄海松, 魏建安, 康佩栋. 基于不平衡数据样本特性的新型过采样SVM分类算法[J]. 控制与决策, 2018, 33(9): 1549–1558. doi: 10.13195/j.kzyjc.2017.0649.
HUANG Haisong, WEI Jian’an, and KANG Peidong. New over-sampling SVM classification algorithm based on unbalanced data sample characteristics[J]. Control and Decision, 2018, 33(9): 1549–1558. doi: 10.13195/j.kzyjc.2017.0649.
|
[15] |
SHI Shengnan, LI Jie, ZHU Dan, et al. A hybrid imbalanced classification model based on data density[J]. Information Sciences, 2023, 624: 50–67. doi: 10.1016/j.ins.2022.12.046.
|
[16] |
TAO Xinmin, GUO Xinyue, ZHENG Yujia, et al. Self-adaptive oversampling method based on the complexity of minority data in imbalanced datasets classification[J]. Knowledge-Based Systems, 2023, 277: 110795. doi: 10.1016/j.knosys.2023.110795.
|
[17] |
周玉, 岳学震, 刘星, 等. 不平衡数据集的自然邻域超球面过采样方法[J]. 哈尔滨工业大学学报, 2024, 56(12): 81–95. doi: 10.11918/202311030.
ZHOU Yu, YUE Xuezhen, LIU Xing, et al. A natural neighborhood hypersphere oversampling method for imbalanced data sets[J]. Journal of Harbin Institute of Technology, 2024, 56(12): 81–95. doi: 10.11918/202311030.
|
[18] |
LENG Qiangkui, GUO Jiamei, JIAO Erjie, et al. NanBDOS: Adaptive and parameter-free borderline oversampling via natural neighbor search for class-imbalance learning[J]. Knowledge-Based Systems, 2023, 274: 110665. doi: 10.1016/j.knosys.2023.110665.
|
[19] |
THEJAS G S, HARIPRASAD Y, IYENGAR S S, et al. An extension of Synthetic Minority Oversampling Technique based on Kalman filter for imbalanced datasets[J]. Machine Learning with Applications, 2022, 8: 100267. doi: 10.1016/j.mlwa.2022.100267.
|
[20] |
胡峰, 王蕾, 周耀. 基于三支决策的不平衡数据过采样方法[J]. 电子学报, 2018, 46(1): 135–144. doi: 10.3969/j.issn.0372-2112.2018.01.019.
HU Feng, WANG Lei, and ZHOU Yao. An oversampling method for imbalance data based on three-way decision model[J]. Acta Electronica Sinica, 2018, 46(1): 135–144. doi: 10.3969/j.issn.0372-2112.2018.01.019.
|
[21] |
ALCALÁ-FDEZ J, SÁNCHEZ L, GARCÍA S, et al. KEEL: A software tool to assess evolutionary algorithms for data mining problems[J]. Soft Computing, 2009, 13(3): 307–318. doi: 10.1007/s00500-008-0323-y.
|
[22] |
LI Junnan, ZHU Qingsheng, WU Quanwang, et al. A novel oversampling technique for class-imbalanced learning based on SMOTE and natural neighbors[J]. Information Sciences, 2021, 565: 438–455. doi: 10.1016/j.ins.2021.03.041.
|
[23] |
LI Junnan, ZHU Qingsheng, WU Quanwang, et al. SMOTE-NaN-DE: Addressing the noisy and borderline examples problem in imbalanced classification by natural neighbors and differential evolution[J]. Knowledge-Based Systems, 2021, 223: 107056. doi: 10.1016/j.knosys.2021.107056.
|