Citation: | HUA Chengcheng, ZHOU Zhanfeng, TAO Jianlong, YANG Wenqing, LIU Jia, FU Rongrong. Virtual Reality Motion Sickness Recognition Model Driven by Lead-attention and Brain Connection[J]. Journal of Electronics & Information Technology, 2025, 47(4): 1161-1171. doi: 10.11999/JEIT240440 |
[1] |
KENNEDY R S, DREXLER J, and KENNEDY R C. Research in visually induced motion sickness[J]. Applied Ergonomics, 2010, 41(4): 494–503. doi: 10.1016/j.apergo.2009.11.006.
|
[2] |
NALIVAIKO E, DAVIS S L, BLACKMORE K L, et al. Cybersickness provoked by head-mounted display affects cutaneous vascular tone, heart rate and reaction time[J]. Physiology & Behavior, 2015, 151: 583–590. doi: 10.1016/j.physbeh.2015.08.043.
|
[3] |
MASON B, 王麒. 虚拟现实会增加晕动病的风险[J]. 中国科技教育, 2017(2): 65–66.
MASON B, WANG Qi. Virtual reality raises real risk of motion sickness[J]. China Science & Technology Educationb, 2017(2): 65–66.
|
[4] |
易琳, 贾瑞双, 刘然, 等. 虚拟现实环境中视觉诱导晕动症的评估指标[J]. 航天医学与医学工程, 2018, 31(4): 437–445. doi: 10.16289/j.cnki.1002–0837.2018.04.008.
YI Lin, JIA Ruishuang, LIU Ran et al. Evaluation indicators for visually induced motion sickness in virtual reality environment[J]. Space Medicine & Medical Engineering, 2018, 31(4): 437–445. doi: 10.16289/j.cnki.1002–0837.2018.04.008.
|
[5] |
KIM J, OH H, KIM W, et al. A deep motion sickness predictor induced by visual stimuli in virtual reality[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(2): 554–566. doi: 10.1109/tnnls.2020.3028080.
|
[6] |
KIM H G, LIM H T, LEE S, et al. VRSA net: VR sickness assessment considering exceptional motion for 360° VR video[J]. IEEE Transactions on Image Processing, 2019, 28(4): 1646–1660. doi: 10.1109/tip.2018.2880509.
|
[7] |
WANG Yuyang, CHARDONNET J R, and MERIENNE F. VR sickness prediction for navigation in immersive virtual environments using a deep long short term memory model[C]. 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), Osaka, Japan, 2019: 1874–1881. doi: 10.1109/VR.2019.8798213.
|
[8] |
耿跃华, 石金祥. 机器学习与脑电信号分析相结合的眩晕状态分类[J]. 中国组织工程研究, 2022, 26(29): 4624–4631. doi: 10.12307/2022.844.
GENG Yuehua and SHI Jinxiang. Classification of vertigo state based on machine learning and electroencephalogram signal analysis[J]. Chinese Journal of Tissue Engineering Research, 2022, 26(29): 4624–4631. doi: 10.12307/2022.844.
|
[9] |
JANG K M, WOO Y S, and LIM H K. Electrophysiological changes in the virtual reality sickness: EEG in the VR sickness[C]. The 25th International Conference on 3D Web Technology, 2020: 26. doi: 10.1145/3424616.3424722.
|
[10] |
LIM H K, JI K, WOO Y S, et al. Test-retest reliability of the virtual reality sickness evaluation using electroencephalography (EEG)[J]. Neuroscience Letters, 2021, 743: 135589. doi: 10.1016/j.neulet.2020.135589.
|
[11] |
NAQVI S A A, BADRUDDIN N, JATOI M A, et al. EEG based time and frequency dynamics analysis of visually induced motion sickness (VIMS)[J]. Australasian Physical & Engineering Sciences in Medicine, 2015, 38(4): 721–729. doi: 10.1007/s13246-015-0379-9.
|
[12] |
LI Xiaolu, ZHU Changrong, XU Cangsu, et al. VR motion sickness recognition by using EEG rhythm energy ratio based on wavelet packet transform[J]. Computer Methods and Programs in Biomedicine, 2020, 188: 105266. doi: 10.1016/j.cmpb.2019.105266.
|
[13] |
CHEN Y C, DUANN J R, CHUANG S W, et al. Spatial and temporal EEG dynamics of motion sickness[J]. NeuroImage, 2010, 49(3): 2862–2870. doi: 10.1016/j.neuroimage.2009.10.005.
|
[14] |
KROKOS E and VARSHNEY A. Quantifying VR cybersickness using EEG[J]. Virtual Reality, 2022, 26(1): 77–89. doi: 10.1007/s10055-021-00517-2.
|
[15] |
WU Jintao, ZHOU Qianxiang, LI Jiaxuan, et al. Inhibition-related N2 and P3: Indicators of visually induced motion sickness (VIMS)[J]. International Journal of Industrial Ergonomics, 2020, 78: 102981. doi: 10.1016/j.ergon.2020.102981.
|
[16] |
PARK S, KIM L, KWON J, et al. Evaluation of visual-induced motion sickness from head-mounted display using heartbeat evoked potential: A cognitive load-focused approach[J]. Virtual Reality, 2022, 26(3): 979–1000. doi: 10.1007/s10055-021-00600-8.
|
[17] |
LIU Ran, XU Miao, ZHANG Yanzhen, et al. A pilot study on electroencephalogram-based evaluation of visually induced motion sickness[J]. Journal of Imaging Science and Technology, 2020, 64(2): 020501. doi: 10.2352/J.ImagingSci.Technol.2020.64.2.020501.
|
[18] |
CECOTTI H and GRASER A. Convolutional neural networks for P300 detection with application to brain-computer interfaces[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(3): 433–445. doi: 10.1109/tpami.2010.125.
|
[19] |
TABAR Y R and HALICI U. A novel deep learning approach for classification of EEG motor imagery signals[J]. Journal of Neural Engineering, 2017, 14(1): 016003. doi: 10.1088/1741-2560/14/1/016003.
|
[20] |
ACHARYA U R, OH S L, HAGIWARA Y, et al. Automated EEG-based screening of depression using deep convolutional neural network[J]. Computer Methods and Programs in Biomedicine, 2018, 161: 103–113. doi: 10.1016/j.cmpb.2018.04.012.
|
[21] |
HU Jie, SHEN Li, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011–2023. doi: 10.1109/tpami.2019.2913372.
|
[22] |
HUANG Jing, REN Lifeng, ZHOU Xiaokang, et al. An improved neural network based on SENet for sleep stage classification[J]. IEEE Journal of Biomedical and Health Informatics, 2022, 26(10): 4948–4956. doi: 10.1109/jbhi.2022.3157262.
|
[23] |
HE Yanbin, LU Zhiyang, WANG Jun, et al. A self-supervised learning based channel attention MLP-mixer network for motor imagery decoding[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2022, 30: 2406–2417. doi: 10.1109/tnsre.2022.3199363.
|
[24] |
NIU Weixin, MA Chao, SUN Xinlin, et al. A brain network analysis-based double way deep neural network for emotion recognition[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2023, 31: 917–925. doi: 10.1109/tnsre.2023.3236434.
|
[25] |
HUA Chengcheng, WANG Hong, CHEN Jichi, et al. Novel functional brain network methods based on CNN with an application in proficiency evaluation[J]. Neurocomputing, 2019, 359: 153–162. doi: 10.1016/j.neucom.2019.05.088.
|
[26] |
KENNEDY R S, LANE N E, BERBAUM K S, et al. Simulator sickness questionnaire: An enhanced method for quantifying simulator sickness[J]. The International Journal of Aviation Psychology, 1993, 3(3): 203–220. doi: 10.1207/s15327108ijap0303_3.
|
[27] |
ZHENG Weilong, LIU Wei, LU Yifei, et al. EmotionMeter: A multimodal framework for recognizing human emotions[J]. IEEE Transactions on Cybernetics, 2019, 49(3): 1110–1122. doi: 10.1109/tcyb.2018.2797176.
|
[28] |
苗敏敏, 徐宝国, 胡文军, 等. 基于自适应优化空频微分熵的情感脑电识别[J]. 仪器仪表学报, 2021, 42(3): 221–230. doi: 10.19650/j.cnki.cjsi.J2006936.
MIAO Minmin, XU Baoguo, HU Wenjun, et al. Emotion EEG recognition based on the adaptive optimized spatial-frequency differential entropy[J]. Chinese Journal of Scientific Instrument, 2021, 42(3): 221–230. doi: 10.19650/j.cnki.cjsi.J2006936.
|
[29] |
PENG Hanchuan, LONG Fuhui, and DING C. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(8): 1226–1238. doi: 10.1109/Tpami.2005.159.
|
[30] |
SCHIRRMEISTER R T, SPRINGENBERG J T, FIEDERER L D J, et al. Deep learning with convolutional neural networks for EEG decoding and visualization[J]. Human Brain Mapping, 2017, 38(11): 5391–5420. doi: 10.1002/hbm.23730.
|
[31] |
DING Wenlong, SHAN Jianhua, FANG Bin, et al. Filter bank convolutional neural network for short time-window steady-state visual evoked potential classification[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2021, 29: 2615–2624. doi: 10.1109/tnsre.2021.3132162.
|
[32] |
PAN Yudong, CHEN Jianbo, ZHANG Yangsong, et al. An efficient CNN-LSTM network with spectral normalization and label smoothing technologies for SSVEP frequency recognition[J]. Journal of Neural Engineering, 2022, 19(5): 056014. doi: 10.1088/1741-2552/ac8dc5.
|
[33] |
TAO Wei, WANG Ze, WONG C M, et al. ADFCNN: Attention-based dual-scale fusion convolutional neural network for motor imagery brain-computer interface[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2024, 32: 154–165. doi: 10.1109/TNSRE.2023.3342331.
|
[34] |
JIN Jing, XU Ruitian, DALY I, et al. MOCNN: A multiscale deep convolutional neural network for ERP-based brain-computer interfaces[J]. IEEE Transactions on Cybernetics, 2024, 54(9): 5565–5576. doi: 10.1109/TCYB.2024.3390805.
|
[35] |
SONG Yonghao, ZHENG Qingqing, LIU Bingchuan, et al. EEG conformer: Convolutional transformer for EEG decoding and visualization[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2023, 31: 710–719. doi: 10.1109/TNSRE.2022.3230250.
|
[36] |
MANE R, ROBINSON N, VINOD A P, et al. A multi-view CNN with novel variance layer for motor imagery brain computer interface[C]. 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society, Montreal, Canada, 2020: 2950–2953. doi: 10.1109/EMBC44109.2020.9175874.
|