Citation: | NING Bo, NING Yi ming, YANG Chao, ZHOU Xin, LI Guan yu, MA Qian. Adaptive Clustering Center Selection: A Privacy Utility Balancing Method for Federated Learning[J]. Journal of Electronics & Information Technology, 2025, 47(2): 519-529. doi: 10.11999/JEIT240414 |
[1] |
李三希, 曹志刚, 崔志伟, 等. 数字经济的博弈论基础性科学问题[J]. 中国科学基金, 2021, 35(5): 782–800. doi: 10.16262/j.cnki.1000-8217.2021.05.021.
LI Sanxi, CAO Zhigang, CUI Zhiwei, et al. Fundamental scientific problems of game theory for the digital economy[J]. Bulletin of National Natural Science Foundation of China, 2021, 35(5): 782–800. doi: 10.16262/j.cnki.1000-8217.2021.05.021.
|
[2] |
刘艺璇, 陈红, 刘宇涵, 等. 联邦学习中的隐私保护技术[J]. 软件学报, 2022, 33(3): 1057–1092. doi: 10.13328/j.cnki.jos.006446.
LIU Yixuan, CHEN Hong, LIU Yuhan, et al. Privacy-preserving techniques in federated learning[J]. Journal of Software, 2022, 33(3): 1057–1092. doi: 10.13328/j.cnki.jos.006446.
|
[3] |
TRAN A T, LUONG T D, KARNJANA J, et al. An efficient approach for privacy preserving decentralized deep learning models based on secure multi-party computation[J]. Neurocomputing, 2021, 422: 245–262. doi: 10.1016/j.neucom.2020.10.014.
|
[4] |
WANG Bolun, YAO Yuanshun, SHAN S, et al. Neural cleanse: Identifying and mitigating backdoor attacks in neural networks[C]. 2019 IEEE Symposium on Security and Privacy, San Francisco, USA, 2019: 707–723. doi: 10.1109/SP.2019.00031.
|
[5] |
YAN Zhigang and LI Dong. Performance analysis for resource constrained decentralized federated learning over wireless networks[J]. IEEE Transactions on Communications, 2024, 72(7): 4084–4100. doi: 10.1109/TCOMM.2024.3362143.
|
[6] |
YAN Zhigang, LI Dong, ZHANG Zhichao, et al. Accuracy–security tradeoff with balanced aggregation and artificial noise for wireless federated learning[J]. IEEE Internet of Things Journal, 2023, 10(20): 18154–18167. doi: 10.1109/JIOT.2023.3277632.
|
[7] |
YAN Zhigang and LI Dong. Decentralized federated learning on the edge: From the perspective of quantization and graphical topology[J]. IEEE Internet of Things Journal, 2024, 11(21): 34172–34186. doi: 10.1109/JIOT.2024.3400512.
|
[8] |
WU Nan, FAROKHI F, SMITH D, et al. The value of collaboration in convex machine learning with differential privacy[C]. 2020 IEEE Symposium on Security and Privacy, San Francisco, USA, 2020: 304–317. doi: 10.1109/SP40000.2020.00025.
|
[9] |
DWORK C. Differential privacy[C]. The 33rd International Colloquium on Automata, Languages and Programming, Venice, Italy, 2006: 1–12. doi: 10.1007/11787006_1.
|
[10] |
张跃, 朱友文, 周玉倩, 等. (ε, δ)-本地差分隐私模型下的均值估计机制[J]. 电子与信息学报, 2023, 45(3): 765–774. doi: 10.11999/JEIT221047.
ZHANG Yue, ZHU Youwen, ZHOU Yuqian, et al. Mean estimation mechanisms under (ε, δ)-local differential privacy[J]. Journal of Electronics and Information Science, 2023, 45(3): 765–774. doi: 10.11999/JEIT221047.
|
[11] |
ABADI M, CHU A, GOODFELLOW I J, et al. Deep learning with differential privacy[C]. 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna, Austria, 2016: 308–318. doi: 10.1145/2976749.2978318.
|
[12] |
郭鹏, 钟尚平, 陈开志, 等. 差分隐私GAN梯度裁剪阈值的自适应选取方法[J]. 网络与信息安全学报, 2018, 4(5): 10–20. doi: 10.11959/j.issn.2096-109x.2018041.
GUO Peng, ZHONG Shangping, CHEN Kaizhi, et al. Adaptive selection method of differential privacy GAN gradient clipping thresholds[J]. Journal of Network and Information Security, 2018, 4(5): 10–20. doi: 10.11959/j.issn.2096-109x.2018041.
|
[13] |
YANG Xiaodong, ZHANG Huishuai, CHEN Wei, et al. Normalized/clipped SGD with perturbation for differentially private non-convex optimization[EB/OL]. https://arxiv.org/abs/2206.13033.
|
[14] |
WU Shuhui, YU Mengqing, AHMED M A M, et al. FL-MAC-RDP: Federated learning over multiple access channels with Rényi differential privacy[J]. International Journal of Theoretical Physics, 2021, 60(7): 2668–2682. doi: 10.1007/s10773-021-04867-0.
|
[15] |
MIRONOV I. Rényi differential privacy[C]. 2017 IEEE 30th Computer Security Foundations Symposium, Santa Barbara, USA, 2017: 263–275. doi: 10.1109/CSF.2017.11.
|
[16] |
HAN Andi, MISHRA B, JAWANPURIA P, et al. Differentially private Riemannian optimization[J]. Machine Learning, 2024, 113(3): 1133–1161. doi: 10.1007/s10994-023-06508-5.
|
[17] |
LI Tian, SAHU A K, ZAHEER M, et al. Federated optimization in heterogeneous networks[J]. Proceedings of Machine Learning and Systems, 2020, 2: 429–450.
|
[18] |
LI Xiaoxiao, JIANG Meirui, ZHANG Xiaofei, et al. FedBN: Federated learning on non-IID features via local batch normalization[C]. The 9th International Conference on Learning Representations, Vienna, Austria, 2021: 1–27.
|
[19] |
LEOUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278–2324. doi: 10.1109/5.726791.
|
[20] |
HAN Xiao, RASUL K, VOLLGRAF R. Fashion-MNIST: A novel image dataset for benchmarking machine learning algorithms[EB/OL]. https://arxiv.org/abs/1708.07747.
|
[21] |
KRIZHEVSKY A, HINTON G. Learning multiple layers of features from tiny images[J]. Handbook of Systemic Autoimmune Diseases, 2009, 1(4).
|
[22] |
MCMAHAN B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data[C]. The 20th International Conference on Artificial Intelligence and Statistics, Fort Lauderdale, USA, 2017: 1273–1282.
|
[23] |
PALIHAWADANA C, WIRATUNGA N, WIJEKOON A, et al. FedSim: Similarity guided model aggregation for Federated Learning[J]. Neurocomputing, 2022, 483: 432–445. doi: 10.1016/j.neucom.2021.08.141.
|